题目:给定一个仅包含数字 2-9
的字符串,返回所有它能表示的字母组合。输入:"23"输出:["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
来源:
法一:自己的代码
思路:无脑暴力循环,毫无技术含量
class Solution: def letterCombinations(self, digits: str): l = len(digits) dict = { 2:'abc', 3:'def', 4:'ghi', 5:'jkl', 6:'mno', 7:'pqrs',8:'tuv', 9:'wxyz'} # 对字典中的字符串进行分割 def fenge(x): x_list = [] for i in range(len(x)): x_list.append(x[i]) return x_list # 对两个list进行笛卡尔积合并 def hebin(x,result): if len(result) == 0: return x else: result_ = [] for i in x: for j in result: result_.append(j+i) return result_ # 如果l为空,直接返回[] if l == 0: return [] result = [] # for循环实现list的合并 for i in range(l): a = digits[i] dic_val = dict[int(a)] dic_val = fenge(dic_val) result = hebin(dic_val, result) return result if __name__ == "__main__": duixiang = Solution() a = duixiang.letterCombinations('3') print(a)
法二:官网的代码
思路:利用回朔算法,回朔的终止条件是从digits中都取了一个字符了,否则继续,回朔函数每次都合并一个字母,这个算法耗时最短,超过百分之99的用户.
class Solution: def letterCombinations(self, digits): """ :type digits: str :rtype: List[str] """ phone = {'2': ['a', 'b', 'c'], '3': ['d', 'e', 'f'], '4': ['g', 'h', 'i'], '5': ['j', 'k', 'l'], '6': ['m', 'n', 'o'], '7': ['p', 'q', 'r', 's'], '8': ['t', 'u', 'v'], '9': ['w', 'x', 'y', 'z']} def backtrack(combination, next_digits): if len(next_digits) == 0: # 如果next_digits长度为0,则说明从digits中的每个数中都取了一个字母了. # 则将得到的字符串放入output中 output.append(combination) # 否则继续取字符 else: # 由于每个数字对应多个字母,故用for循环 for letter in phone[next_digits[0]]: # 每次回朔的时候都把for循环中的数字去掉,并且把letter合并如combination中 backtrack(combination + letter, next_digits[1:]) output = [] if digits: backtrack("", digits) return output if __name__ == "__main__": duixiang = Solution() a = duixiang.letterCombinations('23') print(a)