在有向图中, 我们从某个节点和每个转向处开始, 沿着图的有向边走。 如果我们到达的节点是终点 (即它没有连出的有向边), 我们停止。
现在, 如果我们最后能走到终点,那么我们的起始节点是最终安全的。 更具体地说, 存在一个自然数 K, 无论选择从哪里开始行走, 我们走了不到 K 步后必能停止在一个终点。
哪些节点最终是安全的? 结果返回一个有序的数组。
该有向图有 N 个节点,标签为 0, 1, ..., N-1, 其中 N 是 graph 的节点数. 图以以下的形式给出: graph[i] 是节点 j 的一个列表,满足 (i, j) 是图的一条有向边。
示例:
输入:graph = [[1,2],[2,3],[5],[0],[5],[],[]]
输出:[2,4,5,6]
这里是上图的示意图。
提示:
graph 节点数不超过 10000.
图的边数不会超过 32000.
每个 graph[i] 被排序为不同的整数列表, 在区间 [0, graph.length - 1] 中选取。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-eventual-safe-states
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution: def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]: n=len(graph) vis=[-1]*n def dfs(i): if vis[i]!=-1: return vis[i]==1 vis[i]=0 for j in graph[i]: if not dfs(j): return False vis[i]=1 return True for i in range(n): dfs(i) res=[] for i in range(n): if vis[i]==1: res.append(i) return res