zoukankan      html  css  js  c++  java
  • [洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)

    题目描述

    国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。

    而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。

    小Q找到了一张由 N×M 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。

    不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。

    于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

    输入输出格式

    输入格式:

    包含两个整数 N 和 M ,分别表示矩形纸片的长和宽。接下来的 NN 行包含一个 N ×M 的 01 矩阵,表示这张矩形纸片的颜色( 0 表示白色, 1 表示黑色)。

    输出格式:

    包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。

    输入输出样例

    输入样例#1: 
    3 3
    1 0 1
    0 1 0
    1 0 0
    
    输出样例#1: 
    4
    6

    对于这道题目,首先需要一个脑洞很大的转换——“如果横坐标加纵坐标是偶数那么取反,然后转化为最大子矩形”
    下面我拿样例做个例子
    对于样例矩阵 1 0 1
           0 1 0
           1 0 0
    经过转化后就变成了
           0 0 0
           0 0 0
           0 0 1
    最大子矩形面积为6,最大正方形面积为4
    为什么这样可以呢?我的理解是,如果一个矩形可以作为棋盘,那么它的黑白两色肯定是相间的。既然是相间的,每隔一位颜色取反岂不就是同一种颜色了吗?当然,黑白二色要各判断一次最大子矩形和最大子正方形。

    下面我们考虑怎么得到最大子正方形,
    f[i][j]表示从第i行第j列向第一行第一列逐渐扩展的最大子正方形的边长。在a[i][j]为我们统计的数(1或0)的情况下,f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1])+1
    第一次看到的人估计很难理解,为什么是min呢?确定没有打错吗?然而,没错,当时我也花了很久才能理解
    下面写一个例子,我们计算1的最大正方形
    1 1 1 0 1 1
    0 1 1 1 1 0
    1 1 1 1 1 0
    0 0 1 1 1 1
    1 1 1 1 0 1
    f[1][1]=1 f[1][2]=1 f[2][1]=0 f[2][2]=min(f[1][2],f[1][1],f[2][1])+1=1
    f[1][3]=1 f[1][4]=0 f[1][5]=1 f[1][6]=1
    f[2][3]=min(f[1][3],f[1][2],f[2][2])+1=2
    .......
    下面的读者可以手推。
    下面我讲讲自己的理解。因为要形成一个正方形,f[i-1][j-1],f[i-1][j],f[i][j-1]必须要同时满足“条件”,即子正方形内必须完全是1,有一个是0都不行,这就是为什么取min了

    下面我们考虑怎么得到最大子矩形(下面只讨论统计1的,统计0的同理)
    1.预处理出
    l[i][j]以(i,j)向左一直为1的话最大扩展到第几列
    r[i][j]以(i,j)向右一直为1的话最大扩展到第几列
    不理解的话看看程序就懂了
    2.
    L[i][j]以(i,j)为下端点的悬线向左一直为1的话最大扩展到第几列
    R[i][j]以(i,j)为下端点的悬线向右一直为1的话最大扩展到第几列
    h[i][j],表示(i,j)为下端点的最大悬线长(就是(i,j)向上始终为1最大能有多长)
    对于(i,j)表示的最大矩形就是(R[i][j]-L[i][j]-1)*h[i][j]

    还有一点小细节见注释

      

    #include<bits/stdc++.h>
    #define mem(aa,bb) memset(aa,bb,sizeof(aa))
    #define ri register int
    using namespace std;
    
    const int maxn=2000+15;
    int n,m,ans1,ans2;
    int a[maxn][maxn],f[maxn][maxn],l[maxn][maxn],r[maxn][maxn],L[maxn][maxn],R[maxn][maxn],h[maxn][maxn];
    void work()
    {
        mem(f,0);mem(l,0);mem(r,0);mem(L,0);mem(R,0);mem(h,0);
        for (ri i=1;i<=n;i++)//预处理 
        {
            int tmp=0;
            for (ri j=1;j<=m;j++)
            if (a[i][j]) l[i][j]=tmp;
            else tmp=j,L[i][j]=0;
            tmp=m+1;
            for (ri j=m;j>=1;j--)
            if (a[i][j]) r[i][j]=tmp;
            else tmp=j,R[i][j]=m+1;
        }
        for (int i=1;i<=m;i++) R[0][i]=m+1;//小细节 
        for (ri i=1;i<=n;i++) 
        for (ri j=1;j<=m;j++)
        if (a[i][j]){
            f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1; 
            h[i][j]=h[i-1][j]+1;//采取一边计算一边处理 
            L[i][j]=max(L[i-1][j],l[i][j]);
            R[i][j]=min(R[i-1][j],r[i][j]);
            ans1=max(ans1,f[i][j]*f[i][j]);
            ans2=max(ans2,h[i][j]*(R[i][j]-L[i][j]-1));
        }
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        for (ri i=1;i<=n;i++)
        for (ri j=1;j<=m;j++)
        {
        scanf("%d",&a[i][j]);
        if (!((i+j)&1)) a[i][j]=1-a[i][j];
    }     
        work();
        for (ri i=1;i<=n;i++)
        for (ri j=1;j<=m;j++)
        a[i][j]=1-a[i][j];
        work();
        printf("%d
    %d",ans1,ans2);
        return 0;
    }
  • 相关阅读:
    第一章:简介
    2018年10月底新公司
    第四章:集成
    第三章:如何建模服务
    第二章:演化架构师
    第一章:微服务
    4、工厂模式
    5、单例模式
    8、模板方法模式
    3、字典介绍
  • 原文地址:https://www.cnblogs.com/xxzh/p/9178346.html
Copyright © 2011-2022 走看看