zoukankan      html  css  js  c++  java
  • [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)

    题目链接:http://noi.ac/contest/12/problem/37

    题目:

    小W收到了一张纸带,纸带上有 n个位置。现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色,但是他发现如果某连续 m 个位置被染成了 m 种不同的颜色,那么就不美观,于是他决定让任意的相邻 m 个位置的颜色至少有两个位置相同。他想知道他一共有多少种染色的方案。

    输入格式

    第一行三个整数 n,mp。

    输出格式

    输出一行一个整数,表示答案对 p 取模的结果。

    题解:

    我们考虑DP,设序列为{a}

    dp[i][j]为考虑前i个位置,[i-j+1,i]中的颜色互不相同,并且ai-j与这段区间中的某一个位置颜色相同

    我们枚举第i+1个位置和[i-j+1,i]中的哪一个颜色相同或者全部不同,进行转移

    dp[i+1][j+1]=dp[i][j]*(m-j)

    dp[i+1][k]+=dp[i][j](1<=k<=j)

    这样的话时间复杂度是O(N^3)的

    发现第二个转移可以前缀和优化一下,显然dp[i+1][k]可以从dp[i][k~(m-1)]转移而来

    时间复杂度O(N^2)

    #include<algorithm>
    #include<cstring>
    #include<cstdio>
    #include<iostream>
    typedef long long ll;
    using std::min;
    const int N=5000+15;
    int n,m;
    ll p;
    ll dp[N][N],sum[N][N];
    int main()
    {
        scanf("%d%d%d",&n,&m,&p);
        dp[0][0]=1;
        for (int i=1;i<=n;i++)
        {
            for (int j=1;j<=min(i,m-1);j++)
            {
                (dp[i][j]+=dp[i-1][j-1]*(m-(j-1))%p)%=p;
                (dp[i][j]+=sum[i-1][j])%=p;
            } 
            for (int j=m-1;j>=1;j--)
            {
                sum[i][j]=(sum[i][j+1]+dp[i][j])%p;
            }
        } 
        ll ans=0;
        for (int i=1;i<m;i++) (ans+=dp[n][i])%=p;
        printf("%lld
    ",ans);
        return 0;
    }
  • 相关阅读:
    Google的Protobuf安装及使用笔记一
    std::list与std::map的排序比较
    svn库镜像
    daemontools中supervise系统进程监控
    memcached的客户端
    Memcached安装及使用
    eclipse下maven配置
    栈溢出
    堆排序
    redis使用笔记
  • 原文地址:https://www.cnblogs.com/xxzh/p/9686588.html
Copyright © 2011-2022 走看看