zoukankan      html  css  js  c++  java
  • 二元运算

    http://192.168.102.138/JudgeOnline/problem.php?cid=1478&pid=2

    1.题目思路:1.只考虑“+” :生成函数经典模型(“+”以及最终查询的“和”有多个不同的值)

          2.考虑“-”:架设生成函数中的次数可以为负数,那么就跟“+”一样处理就好,但FFT无法处理负数,所以我们考虑把最终查询的和+100002,而每一个次数都+50001,这就意味着负数变成了正数,可以使用FFT,而且不影响最终结果

          3.处理条件:因为已经将其转化为一个生成函数(即多项式),那么我们不难发现次数小的一定比次数大的要小,但我们不能枚举每一对的大小关系,为了能用到FFT的时间优势,于是我们考虑分治,比mid小的显然比mid大的要小,如此,就把al~mid 与bmid+1~r  的贡献 和 amid+1~r 与 bl~mid 的贡献相加,然后再分治就做完了

    2.知识点:1.生成函数

         2.分治确定大小关系

         3.通过CDQ分治限制大小关系,从而解决一些有要求的题,满足一些条件

    Code:

    #include <bits/stdc++.h>
    using namespace std;
    const double FI = acos(-1);
    struct edge
    { 
        double x;
        double y; 
    }A[500010],B[500010];
    int a[500010],b[500010],inv1[500010];
    int n;
    int T,x,m,Q;
    int len1,len2;
    long long ans[500010];
    edge operator + (edge &a,edge &b)
    { 
        return (edge){a.x + b.x,a.y + b.y}; 
    }
    edge operator - (edge &a,edge &b)
    { 
        return (edge){a.x - b.x,a.y - b.y}; 
    }
    edge operator *(const edge &a,const edge &b)
    { 
        return (edge){a.x * b.x - a.y * b.y,a.x  * b.y + a.y * b.x}; 
    }
    void FFT(edge *a,int leng,int type)
    {
        for (int i = 0; i < leng; i++) 
            if(i < inv1[i]) 
                swap(a[i],a[inv1[i]]);
        for (int i = 1; i < leng; i <<= 1 )
        {
            edge wn = (edge){cos(FI / i),type * sin(FI / i)};
            for (int p = i << 1, j = 0; j < leng; j += p)
            {
                edge w = (edge){1,0};
                for (int k = 0; k < i; k++,w = w * wn)
                {
                    edge x = a[j + k],y = w * a[i + j + k]; 
                    a[j + k] = x + y; 
                    a[i + j + k] = x - y;
                }
            }
        }
        if (type == 1) return;
        for (int i = 0; i < leng; i++) a[i].x /= leng;
    }
    
    void CDQ(int l,int r)
    {
        if (l == r) return;
        int mid = (l + r) >> 1;
        int n,L = 0;
        for (n = 1; n <= r - l + 1; n <<= 1) L++;
        for (int i = 0; i < n; i++) 
            inv1[i] = (inv1[i >> 1] >> 1) | ((i & 1) << (L - 1));
        for (int i = 0; i < n; i++) 
            A[i] = B[i] = (edge){0,0};
        for (int i =  l; i <= mid; i++) 
            A[i - l].x = a[i];
        for (int i = mid + 1; i <= r ; i++) B[i - mid - 1].x = b[i];
        FFT(A,n,1); FFT(B,n,1);
        for (int i = 0; i < n; i++) A[i] = A[i] * B[i];
        FFT(A,n,-1);
        for (int i = 0; i < n; i++) 
            ans[i + mid + 1 + l] += (long long)(A[i].x + 0.5);
        for (int i = 0; i < n; i++) 
            A[i] = B[i] = (edge){0,0};
        for (int i = mid + 1; i <= r; i++) 
            A[i - mid - 1].x = a[i];
        for (int i = l; i <= mid; i++) 
            B[mid - i].x = b[i];
        FFT(A,n,1); FFT(B,n,1);
        for (int i = 0; i <  n; i++) A[i] = A[i] * B[i];
        FFT(A,n,-1);
        for (int i = 0; i < n; i++) ans[i + 1] += (long long)(A[i].x + 0.5);
        CDQ(l,mid); CDQ(mid + 1,r);
    }
    int main()
    { 
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d%d",&n,&m,&Q); 
            memset(ans,0,sizeof(ans)); 
            memset(a,0,sizeof(a)); 
            memset(b,0,sizeof(b)); 
            len1 = len2 = 0;
            for (int i = 1; i <= n; i++) 
            {
                scanf("%d",&x);
                a[x]++;
                len1 = max(len1,x);
            }
            for (int i = 1; i <= m; i++) 
            {
                scanf("%d",&x);
                b[x]++;
                len2 = max(len2,x);
            }    
            for (int i = 1; i <= len1 && i <= len2; i++) 
                ans[0] += 1ll * a[i] * b[i];
            CDQ(0,max(len1,len2));
            for (int i = 1; i <= Q; i++) 
                scanf("%d",&x),printf("%lld
    ",ans[x]);
        }
        return 0;
    }
  • 相关阅读:
    leetcode 1 两数之和
    leetcode 486 预测赢家
    leetcode 121 买卖股票的最佳时机
    leetcode 5 最长回文子串
    个人作业——软件工程实践总结作业
    个人作业——软件产品案例分析
    软件工程实践2017 个人技术博客
    软件工程实践2017结对项目——第二次作业
    软件工程实践2017结对项目——第一次作业
    课堂笔记(六)
  • 原文地址:https://www.cnblogs.com/xyj1/p/13705035.html
Copyright © 2011-2022 走看看