zoukankan      html  css  js  c++  java
  • 仿scikit-learn模式写的kNN算法

    一、什么是kNN算法

    k邻近是指每个样本都可以用它最接近的k个邻居来代表。

    核心思想:如果一个样本在特征空间中的k个最相邻的样本中大多数属于一个某类别,则该样本也属于这个类别。

    二、将kNN封装成kNNClassifier

    1、训练样本的特征在二维空间中的表示

      

    2、kNN的训练过程如下图

      

    3、完整代码(kNN.py)

    import numpy as np
    from math import sqrt
    from collections import Counter
    from metrics import accuracy_score
    
    class kNNClassifier():
        def __init__(self, k):
            """初始化kNN分类器"""
            assert k >= 1, "k must be valid"
            self.k = k
            self._x_train = None
            self._y_train = None
    
        def fit(self, x_train, y_train):
            """根据训练集x_train和y_train训练kNN分类器"""
            assert x_train.shape[0] == y_train.shape[0], 
                "the size of x_train must be equal to the size of y_train"
            assert x_train.shape[0] >= self.k, "the size of x_train must be at least k"
            self._x_train = x_train
            self._y_train = y_train
            return self
    
        def predict(self, X_predict):
            """给定待预测数据集X_train,返回表示x_train的结果向量"""
            assert self._x_train is not None and self._y_train is not None, 
                "must fit before predict"
            assert X_predict.shape[1] == self._x_train.shape[1] , 
                "the feature number of X_predict must be equal to x_train"
            y_predict = [self._predict(x) for x in X_predict]
            return np.array(y_predict)
    
        def _predict(self, x):
            """给定待预测数据x,返回x预测的结果值"""
            assert x.shape[0] == self._x_train.shape[1], 
                "the feature number of x must be equal tu x_train"
            distances = [sqrt(np.sum((x_train-x)**2)) for x_train in self._x_train]
            nearest = np.argsort(distances)
            topK_y = [self._y_train[i] for i in nearest[:self.k]]
            votes = Counter(topK_y)
            return votes.most_common(1)[0][0]
    
        def score(self, X_test, y_test):
            """根据数据集X_test 和y_test 得到当前模型的准确度"""
            y_predict = self.predict(X_test)
            return accuracy_score(y_test, y_predict)
    
        def __repr__(self):
            return "kNN(k=%d)" % self.k
    
    if __name__ == "__main__":
        x_train = np.array([[0.31864691, 0.99608349],
                            [0.8609734 , 0.40706129],
                            [0.86746155, 0.20136923],
                            [0.4346735 , 0.17677379],
                            [0.42842348, 0.68055183],
                            [0.70661963, 0.76155652],
                            [0.73379517, 0.6123456 ],
                            [0.68330672, 0.52193524],
                            [0.11192091, 0.07885633],
                            [0.99273292, 0.62484263]])
        y_train = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
        k = 6
        x = np.array([0.756789,0.6123456])
        knn = kNNClassifier(k)
        knn.fit(x_train,y_train)
        x_predict = x.reshape(1,-1)
        print(knn.predict(x_predict))

    三、测试结果

    [1]

    四、问题

    1、如果直接将上面训练得到的模型直接放在真实环境中使用,但是模型没有得到验证,会造成模型很差,会有真实损失。

    2、真实环境下很难拿到符合条件的数据去测试

    解决办法:

    1、将训练数据拿出一部分作为测试数据,通过测试数据直接判断模型好坏。

    2、在模型进入真实环境前改进模型

    1、train_test_split.py

    import numpy as np
    
    def train_test_split(X, Y, train_ratio=0.8, seed=None):
        """将数据X和Y按照train_ratio分割成x_train,y_train,x_test,y_test"""
        assert X.shape[0] == Y.shape[0], "the size of X must equal to the size of Y"
        assert 0.0 <= train_ratio <= 1.0, "train_ratio must be valid"
    
        if seed:
            np.random.seed(seed)
    
        shuffled_indexes = np.random.permutation(len(X))
        train_size = int(len(X) * train_ratio)
        train_indexes = shuffled_indexes[:train_size]
        test_indexes = shuffled_indexes[train_size:]
    
        x_train = X[train_indexes]
        y_train = Y[train_indexes]
    
        x_test = X[test_indexes]
        y_test = Y[test_indexes]
    
        return x_train,y_train,x_test,y_test

    2、实际操作

    2、从最终的结果来看,该模型与原始数据的标签的吻合达到100%。

    五、scikit-learn中的train_test_split

     
  • 相关阅读:
    【杭电】[1302]The Snail
    【Light】[1297]Largest Box
    ubuntu10.04安装putty以保存SSH会话
    印象笔记导入为知笔记方法
    HTTP返回状态码及错误大全
    Ubuntu14.04安装wineqq国际版
    Ubuntu Unity 桌面快捷键切换窗口技巧
    Ubuntu14.04下安装为知笔记
    在ubuntu中如何管理startup application
    Error:" Can't locate Term/ReadKey.pm in @INC" 的解决方法
  • 原文地址:https://www.cnblogs.com/xypbk/p/8951851.html
Copyright © 2011-2022 走看看