zoukankan      html  css  js  c++  java
  • ZOJ 3781 Paint the Grid Reloaded (最短路)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781

    题意:

    在n*m矩阵的图定义连通区域为x值或y值相同且颜色相同的连通,连通具有传递性

    每次可以把一个连通区域颜色反转(O变X,X变O)

    问把所有块的颜色变为X最小的步数

    方法:

    很巧妙的最短路问题,先建图,然后以每个顶点为起点,找单源最短路的最大的值(也就是最深的深度),然后这个值取min

    建图:相邻的块连边权1的边(即:通过1次反转可以使得两个连通块变为一个连通块)

    注意:

    floyd会TLE,需要邻接表建图

    因为是稀疏图且边权为1,所以使用bfs或者spfa或者dijkstra均可

    代码:spfa

      1 // #pragma comment(linker, "/STACK:102400000,102400000")
      2 #include <cstdio>
      3 #include <iostream>
      4 #include <cstring>
      5 #include <string>
      6 #include <cmath>
      7 #include <set>
      8 #include <list>
      9 #include <map>
     10 #include <iterator>
     11 #include <cstdlib>
     12 #include <vector>
     13 #include <queue>
     14 #include <stack>
     15 #include <algorithm>
     16 #include <functional>
     17 using namespace std;
     18 typedef long long LL;
     19 #define ROUND(x) round(x)
     20 #define FLOOR(x) floor(x)
     21 #define CEIL(x) ceil(x)
     22 const int maxn = 1610;
     23 const int maxm = 100010;
     24 const int inf = 0x3f3f3f3f;
     25 const LL inf64 = 0x3f3f3f3f3f3f3f3fLL;
     26 const double INF = 1e30;
     27 const double eps = 1e-6;
     28 const int P[4] = {0, 0, -1, 1};
     29 const int Q[4] = {1, -1, 0, 0};
     30 const int PP[8] = { -1, -1, -1, 0, 0, 1, 1, 1};
     31 const int QQ[8] = { -1, 0, 1, -1, 1, -1, 0, 1};
     32 char mtx[50][50];
     33 int label[50][50];
     34 int g[maxn][maxn];
     35 struct Edge
     36 {
     37     int u, v;
     38     int w;
     39     int next;
     40     Edge(int _u = -1, int _v = -1, int _w = -1, int _next = -1): u(_u), v(_v), w(_w), next(_next) {}
     41 } edge[maxm];
     42 int n;
     43 int N, M;
     44 int head[maxn];
     45 int d[maxn];
     46 int en;
     47 int ans;
     48 void addse(int u, int v, int w)
     49 {
     50     edge[en] = Edge(u, v, w, head[u]);
     51     head[u] = en++;
     52 }
     53 void adde(int u, int v, int w)
     54 {
     55     addse(u, v, w);
     56     addse(v, u, w);
     57 }
     58 void init()
     59 {
     60     memset(g, 0x3f, sizeof(g));
     61     memset(head, -1, sizeof(head));
     62     en = 0;
     63     memset(label, -1, sizeof(label));
     64     ans = 0;
     65 }
     66 void input()
     67 {
     68     scanf("%d%d", &N, &M);
     69     for (int i = 0; i < N; i++)
     70         scanf("%s", mtx[i]);
     71 }
     72 void debug()
     73 {
     74     //
     75 }
     76 void dfs(int x, int y, char ch)
     77 {
     78     label[x][y] = n;
     79     for (int i = 0; i < 4; i++)
     80     {
     81         int nx = x + P[i];
     82         int ny = y + Q[i];
     83         if (nx < 0 || nx >= N || ny < 0 || ny >= M) continue;
     84         if (label[nx][ny] == -1 && mtx[nx][ny] == ch)
     85         {
     86             dfs(nx, ny, ch);
     87         }
     88     }
     89 }
     90 void build()
     91 {
     92     n = 0;
     93     for (int i = 0; i < N; i++)
     94     {
     95         for (int j = 0; j < M; j++)
     96         {
     97             if (label[i][j] == -1)
     98             {
     99                 dfs(i, j, mtx[i][j]);
    100                 n++;
    101             }
    102         }
    103     }
    104 
    105     for (int i = 0; i < N; i++)
    106     {
    107         for (int j = 0; j < M; j++)
    108         {
    109             for (int p = 0; p < 4; p++)
    110             {
    111                 int nx = i + P[p];
    112                 int ny = j + Q[p];
    113                 if (nx < 0 || nx >= N || ny < 0 || ny >= M) continue;
    114                 g[label[i][j]][label[nx][ny]] = g[label[nx][ny]][label[i][j]] = 1;
    115             }
    116         }
    117     }
    118 
    119     for (int i = 0; i < n; i++)
    120     {
    121         for (int j = i + 1; j < n; j++)
    122         {
    123             if (g[i][j]==1)
    124             {
    125                 adde(i, j, 1);
    126                 // cout << j << " ";
    127             }
    128         }
    129         // cout << endl;
    130     }
    131 }
    132 int spfa(int s)
    133 {
    134     int cnt[maxn];
    135     int mark[maxn];
    136     queue<int> Q;
    137     for (int i = 0; i < n; ++i) d[i] = inf;
    138     memset(mark, 0, sizeof(mark));
    139     memset(cnt, 0, sizeof(cnt));
    140     d[s] = 0;
    141     Q.push(s);
    142     mark[s] = 1;
    143     cnt[s]++;
    144     while (Q.size())
    145     {
    146         int u = Q.front();
    147         Q.pop();
    148         mark[u] = 0;
    149         for (int i = head[u]; i != -1; i = edge[i].next)
    150         {
    151             int v = edge[i].v;
    152             int w = edge[i].w;
    153             if (d[u] + w < d[v])
    154             {
    155                 d[v] = d[u] + w;
    156                 if (mark[v] == 0)
    157                 {
    158                     mark[v] = 1;
    159                     Q.push(v);
    160                     if (++cnt[v] > n) return inf; //有负环,可以用DFS找
    161                 }
    162             }
    163         }
    164     }
    165     int ret = -1;
    166     for (int i = 0; i < n; i++)
    167     {
    168         ret = max(ret, d[i]);
    169     }
    170     if (ret == -1) return inf;
    171     // cout<<"ret:"<<ret<<endl;
    172     return ret;
    173 }
    174 void solve()
    175 {
    176     build();
    177 
    178     ans = inf;
    179     for (int i = 0; i < n; i++)
    180     {
    181         ans = min(ans, spfa(i));
    182     }
    183     printf("%d
    ", ans);
    184 }
    185 void output()
    186 {
    187     //
    188 }
    189 int main()
    190 {
    191     // std::ios_base::sync_with_stdio(false);
    192 #ifndef ONLINE_JUDGE
    193     freopen("in.cpp", "r", stdin);
    194 #endif
    195 
    196     int T;
    197     scanf("%d", &T);
    198     while (T--)
    199     {
    200         init();
    201         input();
    202         solve();
    203         output();
    204     }
    205     return 0;
    206 }
    View Code

    dijkstra:需要用优先队列优化dijkstra

      1 /*
      2 *floyd TLE
      3 */
      4 // #pragma comment(linker, "/STACK:102400000,102400000")
      5 #include <cstdio>
      6 #include <iostream>
      7 #include <cstring>
      8 #include <string>
      9 #include <cmath>
     10 #include <set>
     11 #include <list>
     12 #include <map>
     13 #include <iterator>
     14 #include <cstdlib>
     15 #include <vector>
     16 #include <queue>
     17 #include <stack>
     18 #include <algorithm>
     19 #include <functional>
     20 using namespace std;
     21 typedef long long LL;
     22 #define ROUND(x) round(x)
     23 #define FLOOR(x) floor(x)
     24 #define CEIL(x) ceil(x)
     25 const int maxn = 1610;
     26 const int maxm = 100010;
     27 const int inf = 0x3f3f3f3f;
     28 const LL inf64 = 0x3f3f3f3f3f3f3f3fLL;
     29 const double INF = 1e30;
     30 const double eps = 1e-6;
     31 const int P[4] = {0, 0, -1, 1};
     32 const int Q[4] = {1, -1, 0, 0};
     33 const int PP[8] = { -1, -1, -1, 0, 0, 1, 1, 1};
     34 const int QQ[8] = { -1, 0, 1, -1, 1, -1, 0, 1};
     35 char mtx[50][50];
     36 int label[50][50];
     37 int g[maxn][maxn];
     38 struct Edge
     39 {
     40     int u, v;
     41     int w;
     42     int next;
     43     Edge(int _u = -1, int _v = -1, int _w = -1, int _next = -1): u(_u), v(_v), w(_w), next(_next) {}
     44 } edge[maxm];
     45 int n;
     46 int N, M;
     47 int head[maxn];
     48 int d[maxn];
     49 int en;
     50 int ans;
     51 void addse(int u, int v, int w)
     52 {
     53     edge[en] = Edge(u, v, w, head[u]);
     54     head[u] = en++;
     55 }
     56 void adde(int u, int v, int w)
     57 {
     58     addse(u, v, w);
     59     addse(v, u, w);
     60 }
     61 void init()
     62 {
     63     memset(g, 0x3f, sizeof(g));
     64     memset(head, -1, sizeof(head));
     65     en = 0;
     66     memset(label, -1, sizeof(label));
     67     ans = 0;
     68 }
     69 void input()
     70 {
     71     scanf("%d%d", &N, &M);
     72     for (int i = 0; i < N; i++)
     73         scanf("%s", mtx[i]);
     74 }
     75 void debug()
     76 {
     77     //
     78 }
     79 void dfs(int x, int y, char ch)
     80 {
     81     label[x][y] = n;
     82     for (int i = 0; i < 4; i++)
     83     {
     84         int nx = x + P[i];
     85         int ny = y + Q[i];
     86         if (nx < 0 || nx >= N || ny < 0 || ny >= M) continue;
     87         if (label[nx][ny] == -1 && mtx[nx][ny] == ch)
     88         {
     89             dfs(nx, ny, ch);
     90         }
     91     }
     92 }
     93 void build()
     94 {
     95     n = 0;
     96     for (int i = 0; i < N; i++)
     97     {
     98         for (int j = 0; j < M; j++)
     99         {
    100             if (label[i][j] == -1)
    101             {
    102                 dfs(i, j, mtx[i][j]);
    103                 n++;
    104             }
    105         }
    106     }
    107 
    108     for (int i = 0; i < N; i++)
    109     {
    110         for (int j = 0; j < M; j++)
    111         {
    112             for (int p = 0; p < 4; p++)
    113             {
    114                 int nx = i + P[p];
    115                 int ny = j + Q[p];
    116                 if (nx < 0 || nx >= N || ny < 0 || ny >= M) continue;
    117                 g[label[i][j]][label[nx][ny]] = g[label[nx][ny]][label[i][j]] = 1;
    118             }
    119         }
    120     }
    121 
    122     for (int i = 0; i < n; i++)
    123     {
    124         for (int j = i + 1; j < n; j++)
    125         {
    126             if (g[i][j] == 1)
    127             {
    128                 adde(i, j, 1);
    129                 // cout << j << " ";
    130             }
    131         }
    132         // cout << endl;
    133     }
    134 }
    135 int Dist[maxn];
    136 struct State
    137 {
    138     int p, c; //p: 点   c: 值
    139     State(int _p, int _c): p(_p), c(_c) {}
    140     bool operator<(const State &o)const
    141     {
    142         return c > o.c;
    143     }
    144 };
    145 int Dijstra(int st)
    146 {
    147     priority_queue<State> Q;
    148     fill(Dist, Dist + n, inf);
    149     Dist[st] = 0;
    150     Q.push(State(st, 0));
    151     while (!Q.empty())
    152     {
    153         State t = Q.top();
    154         Q.pop();
    155         if (t.c > Dist[t.p])continue;
    156         int ncost;
    157         for (int i = head[t.p]; i != -1; i = edge[i].next)
    158             if ((ncost = t.c + edge[i].w) < Dist[edge[i].v])
    159             {
    160                 Dist[edge[i].v] = ncost;
    161                 Q.push(State(edge[i].v, Dist[edge[i].v]));
    162             }
    163     }
    164     int ret = -1;
    165     for (int i = 0; i < n; i++)
    166         ret = max(ret, Dist[i]);
    167     if (ret == -1) return inf;
    168     return ret;
    169 }
    170 void solve()
    171 {
    172     build();
    173 
    174     ans = inf;
    175     for (int i = 0; i < n; i++)
    176     {
    177         ans = min(ans, Dijstra(i));
    178     }
    179     printf("%d
    ", ans);
    180 }
    181 void output()
    182 {
    183     //
    184 }
    185 int main()
    186 {
    187     // std::ios_base::sync_with_stdio(false);
    188 #ifndef ONLINE_JUDGE
    189     freopen("in.cpp", "r", stdin);
    190 #endif
    191 
    192     int T;
    193     scanf("%d", &T);
    194     while (T--)
    195     {
    196         init();
    197         input();
    198         solve();
    199         output();
    200     }
    201     return 0;
    202 }
    View Code
  • 相关阅读:
    RedisTemplate使用事务处理
    maven命令学习
    springboot学习地址
    Mycat实现读写分离
    springboot-异步线程调用
    java多线程ExecutorService
    IntelliJ Idea 常用快捷键列表
    springMVC请求处理过程
    记录一次面试题
    java面试题-java内存模型
  • 原文地址:https://www.cnblogs.com/xysmlx/p/3876318.html
Copyright © 2011-2022 走看看