zoukankan      html  css  js  c++  java
  • POJ 1258 Agri-Net (最小生成树)

    Agri-Net
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 43652   Accepted: 17856

    Description

    Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 
    Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 
    Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 
    The distance between any two farms will not exceed 100,000. 

    Input

    The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

    Output

    For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

    Sample Input

    4
    0 4 9 21
    4 0 8 17
    9 8 0 16
    21 17 16 0
    

    Sample Output

    28


      1 #include <iostream>
      2 #include <fstream>
      3 #include <cstdio>
      4 #include <string>
      5 #include <queue>
      6 #include <vector>
      7 #include <map>
      8 #include <algorithm>
      9 #include <cstring>
     10 #include <cctype>
     11 #include <cstdlib>
     12 #include <cmath>
     13 #include <ctime>
     14 using    namespace    std;
     15 
     16 const    int    SIZE = 105;
     17 int    FATHER[SIZE],N,M,NUM;
     18 int    MAP[SIZE][SIZE];
     19 struct    Node
     20 {
     21     int    from,to,cost;
     22 }G[SIZE * SIZE];
     23 
     24 void    ini(void);
     25 int    find_father(int);
     26 void    unite(int,int);
     27 bool    same(int,int);
     28 int    kruskal(void);
     29 bool    comp(const Node &,const Node &);
     30 int    main(void)
     31 {
     32     while(~scanf("%d",&N))
     33     {
     34         ini();
     35         for(int i = 1;i <= N;i ++)
     36             for(int j = 1;j <= N;j ++)
     37                 scanf("%d",&MAP[i][j]);
     38         for(int i = 1;i <= N;i ++)
     39             for(int j = i + 1;j <= N;j ++)
     40             {
     41                 G[NUM].from = i;
     42                 G[NUM].to = j;
     43                 G[NUM].cost = MAP[i][j];
     44                 NUM ++;
     45             }
     46         sort(G,G + NUM,comp);
     47         printf("%d
    ",kruskal());
     48     }
     49 
     50     return 0;
     51 }
     52 
     53 void    ini(void)
     54 {
     55     NUM = 0;
     56     for(int i = 1;i <= N;i ++)
     57         FATHER[i] = i;
     58 }
     59 
     60 int    find_father(int n)
     61 {
     62     if(FATHER[n] == n)
     63         return    n;
     64     return    FATHER[n] = find_father(FATHER[n]);
     65 }
     66 
     67 void    unite(int x,int y)
     68 {
     69     x = find_father(x);
     70     y = find_father(y);
     71 
     72     if(x == y)
     73         return    ;
     74     FATHER[x] = y;
     75 }
     76 
     77 bool    same(int x,int y)
     78 {
     79     return    find_father(x) == find_father(y);
     80 }
     81 
     82 bool    comp(const Node & a,const Node & b)
     83 {
     84     return    a.cost < b.cost;
     85 }
     86 
     87 int    kruskal(void)
     88 {
     89     int    ans = 0,count = 0;
     90 
     91     for(int i = 0;i < NUM;i ++)
     92         if(!same(G[i].from,G[i].to))
     93         {
     94             unite(G[i].from,G[i].to);
     95             count ++;
     96             ans += G[i].cost;
     97             if(count == N - 1)
     98                 break;
     99         }
    100     return    ans;
    101 }
  • 相关阅读:
    Practical .NET2 and C#2 翻译样章
    Resume
    Double Dispatch And Visitor Pattern
    Separate Contract from Implementation
    Kerberos简介
    责任分离的思想 oo dp orm aop
    Resources on Debugging/Tracing WPF
    沿着“重用”我们一路走来——SA、OO(DP)、Component、SOA、AOP
    Enterprise Test Driven Develop
    How does ElementName Binding work – Part 2 BindingExpression
  • 原文地址:https://www.cnblogs.com/xz816111/p/4549308.html
Copyright © 2011-2022 走看看