zoukankan      html  css  js  c++  java
  • POJ 1258 Agri-Net (最小生成树)

    Agri-Net
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 43652   Accepted: 17856

    Description

    Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 
    Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 
    Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 
    The distance between any two farms will not exceed 100,000. 

    Input

    The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

    Output

    For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

    Sample Input

    4
    0 4 9 21
    4 0 8 17
    9 8 0 16
    21 17 16 0
    

    Sample Output

    28


      1 #include <iostream>
      2 #include <fstream>
      3 #include <cstdio>
      4 #include <string>
      5 #include <queue>
      6 #include <vector>
      7 #include <map>
      8 #include <algorithm>
      9 #include <cstring>
     10 #include <cctype>
     11 #include <cstdlib>
     12 #include <cmath>
     13 #include <ctime>
     14 using    namespace    std;
     15 
     16 const    int    SIZE = 105;
     17 int    FATHER[SIZE],N,M,NUM;
     18 int    MAP[SIZE][SIZE];
     19 struct    Node
     20 {
     21     int    from,to,cost;
     22 }G[SIZE * SIZE];
     23 
     24 void    ini(void);
     25 int    find_father(int);
     26 void    unite(int,int);
     27 bool    same(int,int);
     28 int    kruskal(void);
     29 bool    comp(const Node &,const Node &);
     30 int    main(void)
     31 {
     32     while(~scanf("%d",&N))
     33     {
     34         ini();
     35         for(int i = 1;i <= N;i ++)
     36             for(int j = 1;j <= N;j ++)
     37                 scanf("%d",&MAP[i][j]);
     38         for(int i = 1;i <= N;i ++)
     39             for(int j = i + 1;j <= N;j ++)
     40             {
     41                 G[NUM].from = i;
     42                 G[NUM].to = j;
     43                 G[NUM].cost = MAP[i][j];
     44                 NUM ++;
     45             }
     46         sort(G,G + NUM,comp);
     47         printf("%d
    ",kruskal());
     48     }
     49 
     50     return 0;
     51 }
     52 
     53 void    ini(void)
     54 {
     55     NUM = 0;
     56     for(int i = 1;i <= N;i ++)
     57         FATHER[i] = i;
     58 }
     59 
     60 int    find_father(int n)
     61 {
     62     if(FATHER[n] == n)
     63         return    n;
     64     return    FATHER[n] = find_father(FATHER[n]);
     65 }
     66 
     67 void    unite(int x,int y)
     68 {
     69     x = find_father(x);
     70     y = find_father(y);
     71 
     72     if(x == y)
     73         return    ;
     74     FATHER[x] = y;
     75 }
     76 
     77 bool    same(int x,int y)
     78 {
     79     return    find_father(x) == find_father(y);
     80 }
     81 
     82 bool    comp(const Node & a,const Node & b)
     83 {
     84     return    a.cost < b.cost;
     85 }
     86 
     87 int    kruskal(void)
     88 {
     89     int    ans = 0,count = 0;
     90 
     91     for(int i = 0;i < NUM;i ++)
     92         if(!same(G[i].from,G[i].to))
     93         {
     94             unite(G[i].from,G[i].to);
     95             count ++;
     96             ans += G[i].cost;
     97             if(count == N - 1)
     98                 break;
     99         }
    100     return    ans;
    101 }
  • 相关阅读:
    2017.1.16【初中部 】普及组模拟赛C组总结
    用Redis实现分布式锁 与 实现任务队列
    Mysql+Keepalived双主热备高可用操作记录
    Linux下防御DDOS攻击的操作梳理
    真正的ddos防御之道,简单干脆有效!
    ip黑白名单防火墙frdev的原理与实现
    一种简单的处理大流量访问的方法
    PHP解决网站大流量与高并发
    PHP反射机制实现自动依赖注入
    nginx 根据域名和地址跳转
  • 原文地址:https://www.cnblogs.com/xz816111/p/4549308.html
Copyright © 2011-2022 走看看