zoukankan      html  css  js  c++  java
  • HDU4432 Sum of Divisors

    涉及知识点:

      1. 进制转换。

      2. 找因子时注意可以降低复杂度。

     

    Sum of divisors

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4837    Accepted Submission(s): 1589


    Problem Description
    mmm is learning division, she's so proud of herself that she can figure out the sum of all the divisors of numbers no larger than 100 within one day!
    But her teacher said "What if I ask you to give not only the sum but the square-sums of all the divisors of numbers within hexadecimal number 100?" mmm get stuck and she's asking for your help.
    Attention, because mmm has misunderstood teacher's words, you have to solve a problem that is a little bit different.
    Here's the problem, given n, you are to calculate the square sums of the digits of all the divisors of n, under the base m.
     
    Input
    Multiple test cases, each test cases is one line with two integers.
    n and m.(n, m would be given in 10-based)
    1≤n≤109
    2≤m≤16
    There are less then 10 test cases.
     
    Output
    Output the answer base m.
     
    Sample Input
    10 2 30 5
     
    Sample Output
    110 112
    Hint
    Use A, B, C...... for 10, 11, 12...... Test case 1: divisors are 1, 2, 5, 10 which means 1, 10, 101, 1010 under base 2, the square sum of digits is 1^2+ (1^2 + 0^2) + (1^2 + 0^2 + 1^2) + .... = 6 = 110 under base 2.
     
    Source
     
    Recommend
    zhoujiaqi2010   |   We have carefully selected several similar problems for you:  5566 5565 5564 5563 5562 
     
    Statistic | Submit | Discuss | Note
    #include<stdio.h>
    #include<math.h>
    
    int Out[64];
    
    int main() {
        int n, m;
        while(~scanf("%d%d", &n, &m)) {
            int sum = 0;
            int limit = (int)sqrt(n);  // 当i是因子时 n/i通常也是因子 可以将复杂度将为O(logn)。
            for(int i = 1; i <= limit; i++) {
                if(n % i == 0) {
                    int t;
                    t = i;
                    while(t) {
                        sum += (t % m)*(t % m);
                        t /= m;
                    }
                    if(i * i != n) {  //避免重复计算。
                        t = n/i;
                        while(t) {
                            sum += (t % m) * (t % m);
                            t /= m;
                        }
                    }
                }
            }
            int i = 0;
            while(sum) {
                Out[i++] = sum % m;
                sum /= m;
            }
            for(int j = i - 1; j >= 0; j--) {
                if(Out[j] > 9) {
                    printf("%c", Out[j] - 10 + 'A');
                } else printf("%d", Out[j]);
            }
            puts("");
        }
        return 0;
    }
    

      

  • 相关阅读:
    随机100道四则运算(文件储存)
    基于 GitBook 搭建个人博客
    ios常用第三方库git下载地址
    网络工程师经常会用到的终端仿真软件
    最常用的终端仿真程序 替代putty
    Linux 命令大全
    Nginx 安装配置
    nginx
    React函数组件和class组件以及Hook
    2020年前端面试题及答案
  • 原文地址:https://www.cnblogs.com/xzrmdx/p/4970260.html
Copyright © 2011-2022 走看看