zoukankan      html  css  js  c++  java
  • 并不对劲的DFT

    FFT是一个很多人选择背诵全文的算法。

    #include<algorithm>
    #include<cmath>
    #include<complex>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<ctime>
    #include<iomanip>
    #include<iostream>
    #include<map>
    #include<queue>
    #include<set>
    #include<stack>
    #include<vector>
    #define rep(i,x,y) for(register int i=(x);i<=(y);++i)
    #define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
    #define cd complex<double>
    #define maxn 1000110
    #define maxm (maxn<<1)
    using namespace std;
    int read()
    {
    	int x=0,f=1;char ch=getchar();
    	while(!isdigit(ch)&&ch!='-')ch=getchar();
    	if(ch=='-')f=-1,ch=getchar();
    	while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
    	return x*f;
    }
    void write(int x)
    {
    	if(x==0){putchar('0'),putchar('
    ');return;}
    	int f=0;char ch[20];
    	if(x<0)putchar('-'),x=-x;
    	while(x)ch[++f]=x%10+'0',x/=10;
    	while(f)putchar(ch[f--]);
    	putchar('
    ');
    	return;
    }
    const double pi=acos(-1);
    int n,m,r[maxm],len;
    cd a[maxm],b[maxm];
    void fft(cd * c,double f)
    {
    	rep(i,0,n-1)if(i<r[i])swap(c[i],c[r[i]]);
    	for(int i=1;i<n;i<<=1)
    	{
    		cd wn(cos(pi/i),sin(f*pi/i)),x,y;
    		for(int j=0;j<n;j+=(i<<1))
    		{
    			cd w(1,0);
    			rep(k,0,i-1)
    				x=c[j+k],y=w*c[j+i+k],c[j+k]=x+y,c[j+i+k]=x-y,w*=wn;	
    		} 
    	}
    }
    int main()
    {
    	n=read(),m=read();
    	rep(i,0,n)a[i]=read();
    	rep(i,0,m)b[i]=read();
    	m+=n;
    	for(n=1;n<=m;n<<=1)len++;
    	rep(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
    	fft(a,1),fft(b,1);
    	rep(i,0,n-1)a[i]*=b[i];
    	fft(a,-1);
    	rep(i,0,m)printf("%d ",int(a[i].real()/n+0.5));
    	return 0;
    }
    

    并不对劲的大剑使认为有必要说明为什么IDFT最后要除以n。
    假设原函数是 (F(x)=a_0x^0+a_1x^1+...+a_{n-1}x^{n-1})
    那么对它进行DFT,将 (omega_n^0,omega_n^1,...,omega_n^{n-1})依次代入,得到(y_0,y_1,...,y_{n-1})
    (G(x)=y_0x^0+y_1x^1+...+y_{n-1}x^{n-1})
    IDFT就是已知G每一项的系数,求F每一项的系数
    先对G进行DFT,将 (omega_n^0,omega_n^{-1},...,omega_n^{-(n-1)}) 依次代入,得到 (z_0,z_1,...,z_{n-1})
    那么就会有 (z_k=sumlimits_{i=0}^{n-1}{y_i*(omega_n^{-k})^i})

    [spacespacespace=sum_{i=0}^{n-1}{(sum_{j=0}^{n-1}a_j*(omega_n^i)^j)(omega_n^{-k})^i} ]

    [space=sum_{i=0}^{n-1}{sum_{j=0}^{n-1}a_j*omega_n^{i*j}*omega_n^{-k*i}} ]

    [=sum_{i=0}^{n-1}{sum_{j=0}^{n-1}a_j*omega_n^{i*(j-k)}}spacespacespacespacespace ]

    [=sum_{j=0}^{n-1}{a_j*(sum_{i=0}^{n-1}omega_n^{i*(j-k)})}spacespace ]

    可以将 (sumlimits_{i=0}^{n-1}omega_n^{i*(j-k)}) 这部分看成一个首项为1,公比为(omega_n^{j-k})的等比数列,那么由等比数列求和公式可知:
    (j-k eq0)时,(sumlimits_{i=0}^{n-1}omega_n^{i*(j-k)}=frac{(omega_n^{j-k})^n-1}{omega_n^{j-k}-1}=frac{(omega_n^n)^{j-k}-1}{omega_n^{j-k}-1}=frac{(omega_n^0)^{j-k}-1}{omega_n^{j-k}-1}=frac{1^{j-k}-1}{omega_n^{j-k}-1}=0)
    (j-k=0)时,(sumlimits_{i=0}^{n-1}omega_n^{i*(j-k)}=sum_{i=0}^{n-1}omega_n^{i*0}=sum_{i=0}^{n-1}1=n)
    这样就有(z_k=a_k*nspace =>space a_k=frac{z_k}{n})
    也就是说,IDFT相当于对当前多项式进行一次代入(omega_n^0,omega_n^{-1},...,omega_n^{-(n-1)})的DFT,再将每一项的系数除以n。

    快速数论变化(FNTT)也是一个很多人选择背诵全文的算法。
    只是把单位根换成了模意义下的原根而已

    #include<algorithm>
    #include<cmath>
    #include<complex>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<ctime>
    #include<iomanip>
    #include<iostream>
    #include<map>
    #include<queue>
    #include<set>
    #include<stack>
    #include<vector>
    #define rep(i,x,y) for(int i=(x);i<=(y);++i)
    #define dwn(i,x,y) for(int i=(x);i>=(y);--i)
    #define cd complex<double>
    #define maxn 2000110
    #define maxm (maxn<<1)
    #define LL long long
    using namespace std;
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(!isdigit(ch)&&ch!='-')ch=getchar();
        if(ch=='-')f=-1,ch=getchar();
        while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
        return x*f;
    }
    void write(int x)
    {
        if(x==0){putchar('0'),putchar('
    ');return;}
        int f=0;char ch[20];
        if(x<0)putchar('-'),x=-x;
        while(x)ch[++f]=x%10+'0',x/=10;
        while(f)putchar(ch[f--]);
        putchar('
    ');
        return;
    }
    const double pi=acos(-1);
    const LL mod=998244353;
    int n,m,r[maxm],len;
    int a[maxm],b[maxm];
    int mul(int x,int y)
    {
        int ans=1;
        while(y)
        {
            if(y&1)ans=((LL)ans*(LL)x)%mod;
            x=((LL)x*(LL)x)%mod,y>>=1;
        }
        return ans;
    }
    void fntt(int * c,double f)
    {
        rep(i,0,n-1)if(i<r[i])swap(c[i],c[r[i]]);
        for(int i=1;i<n;i<<=1)
        {
            int wn=mul(3,(mod-1)/(i<<1)),x,y;
            if(f==-1)wn=mul(wn,mod-2);
            for(int j=0;j<n;j+=(i<<1))
            {
                int w=1;
                rep(k,0,i-1)
                    x=c[j+k]%mod,y=((LL)w*(LL)c[j+i+k])%mod,c[j+k]=(x+y)%mod,c[j+i+k]=(x-y+mod)%mod,w=(LL)w*(LL)wn%mod;	
            }
        }
    }
    int main()
    {
        n=read(),m=read();
        rep(i,0,n)a[i]=read();
        rep(i,0,m)b[i]=read();
        m+=n;
        for(n=1;n<m+1;n<<=1)len++;
        rep(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
        fntt(a,1),fntt(b,1);
        rep(i,0,n-1)a[i]=((LL)a[i]*(LL)b[i])%mod;
        fntt(a,-1);int inv=mul(n,mod-2);
        rep(i,0,m)printf("%d ",(LL)a[i]*(LL)inv%mod);
        return 0;
    }
    
    
    
  • 相关阅读:
    KT_登录_流程图
    从零开始——电子商务平台02_遇到的小问题
    从零开始——电子商务平台02
    COCOMOII
    从零开始——电子商务平台01_遇到的小问题
    从零开始——电子商务平台01
    从零开始——MySql01
    【 bzoj4537】HNOI2016 最小公倍数
    SDOI2016 R1 解题报告 bzoj4513~bzoj4518
    左偏树初步 bzoj2809 & bzoj4003
  • 原文地址:https://www.cnblogs.com/xzyf/p/10021329.html
Copyright © 2011-2022 走看看