zoukankan      html  css  js  c++  java
  • 洛咕 P4528 [CTSC2008]图腾

    洛咕 P4528 [CTSC2008]图腾


    神题orz。

    先约定abcd表示$1leq A<B<C<Dleq n$,而且$y_a,y_b,y_c,y_d$的排名正好是$a,b,c,d$的方案数

    那么所求就是

    1324-1243-1432

    =(1x2x-1423)-(14xx-1423)-(12xx-1234)

    (其中有x的表示排名任意,但是不能重复)

    =1x2x-14xx-12xx+1234

    =1x2x-1xxx+13xx+1234

    预处理$L,R$,(L_i=sum_{j<i}[y_j<y_i],R_i=sum_{j>i}[y_j<y_i]),可以用树状数组处理

    (可以看出,(L_i+R_i=y_i-1),可以只求$L_i$就行了;(n-i-R_i=sum_{j>i}[y_j>y_i]),这是等一下要用到的性质)

    分别看怎么求:

    1x2x:枚举2的位置$i$,那么右边有$n-i-R_i$中选法,左边要满足$j<k<i,y_j<y_i,y_k>y_i$,1放在j,x放在k的位置

    若只考虑$y_j<y_i$,有$L_i*(i-1)$种选法;那么多算了$j<k,y_k<y_i$的和$jgeq k$的

    $j<k,y_k<y_i$的方案数是$C_^2$

    $j>k$的方案数,因为此时对$k$的限制只有$kleq j$,所以对每个$j$都可以取$[1,j](,所以就是)sum_{p<i,y_p<y_i}p$

    1xxx:很容易,就是$sum C_^3$

    13xx:枚举3,那么4有$n-i-R_i$种选法,1和2要满足$j<i<k,y_j<y_k<y_i$

    只考虑$y_j<y_i,y_k<y_i,j<i$,有$L_i(y_i-1)$种选法,需要减去的是$kleq i$的和$y_jgeq y_k$的

    $kleq i$的就是$C_^2$

    $y_j>y_k$的,此时对$k$的限制只有$y_kleq y_j$,所以对每个$j$都可以取所有$y<y_j$的位置,就是$sum_{p<i,y_p<y_i}y_p$

    1234:枚举3,后面的就是$n-i-R_i$,前面如果2确定了放在$j$位置,1的放法就是$L_j$,答案是$sum_ (n-i-R_i)(sum_{j<i,y_j<y_i}L_j)$,树状数组直接做

    完结撒FA(逃

    #include<bits/stdc++.h>
    #define il inline
    #define vd void
    #define mod 16777216
    typedef long long ll;
    il int gi(){
        int x=0,f=1;
        char ch=getchar();
        while(!isdigit(ch)){
            if(ch=='-')f=-1;
            ch=getchar();
        }
        while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
        return x*f;
    }
    ll n,p[200010],L[200010],R[200010];
    int t[200010];
    il vd inc(int&x,int y){x+=y;x%=mod;}
    il vd upd(int p,int d){while(p<=n)inc(t[p],d),p+=p&-p;}
    il int query(int p){int ret=0;while(p)inc(ret,t[p]),p-=p&-p;return ret;}
    int main(){
        n=gi();
        for(int i=1;i<=n;++i)p[i]=gi();
        for(int i=1;i<=n;++i)L[i]=query(p[i]),R[i]=p[i]-1-L[i],upd(p[i],1);
        memset(t,0,sizeof t);
        int ans=0;
        for(int i=1;i<=n;++i){
            int x=n-i-R[i];
            ans=(ans-(1ll*x*(x-1)*(x-2)/6)%mod+mod)%mod;//1xxx
        }
        for(int i=1;i<=n;++i)ans=(ans+(n-i-R[i])*query(p[i]))%mod,upd(p[i],L[i]);//1234
        memset(t,0,sizeof t);
        for(int i=1;i<=n;++i)ans=(ans+(L[i]*(i-1)-query(p[i])-L[i]*(L[i]-1)/2)*(n-i-R[i])%mod+mod)%mod,upd(p[i],i);//1x2x
        memset(t,0,sizeof t);
        for(int i=n;i;--i)ans=(ans+(query(p[i])-R[i]*(R[i]+1)/2)*(n-i-R[i])%mod+mod)%mod,upd(p[i],p[i]);//13xx
        printf("%d
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    Cstring 和 const char* , unicode和ANSI编码 的一个具体应用(转)
    引用 CTreeCtrl中用右键选中item并弹出菜单的方法(转)
    Android 开发人员必须掌握的 10 个开发工具
    关于在线程中使用AfxGetMainWnd()出错的问题,终于找到了
    MFC CListCtrl的用法.Style/插入、删除、选中数据及排序问题等(转)
    vc++ 中的匈牙利变量表示法
    Android模拟器安装程序及上传音乐并播放
    关于CString总结(转)
    MSSQL优化之————探索MSSQL执行计划(转)
    抓虫系列(三) 不要轻视web程序中常用的三个"池" 之数据库连接池
  • 原文地址:https://www.cnblogs.com/xzz_233/p/10039815.html
Copyright © 2011-2022 走看看