zoukankan      html  css  js  c++  java
  • BZOJ3994 [SDOI2015]约数个数和

    Description

     设d(x)为x的约数个数,给定N、M,求$sum_{i=1}^nsum_{j=1}^md(ij)$

    Input

    输入文件包含多组测试数据。

    第一行,一个整数T,表示测试数据的组数。
    接下来的T行,每行两个整数N、M。

    Output

     T行,每行一个整数,表示你所求的答案。

    Sample Input

    2
    7 4
    5 6

    Sample Output

    110
    121

    HINT

     1<=N, M<=50000

    1<=T<=50000

    Solution

    计算$d(ij)$时,我们把$ij$的每个约数$d$映射到$(gcd(d, i), frac{d}{gcd(d, i)})$,那么这两个数一定分别是$i, j$的因数,且$(a, b)$对应一个因数当且仅当$gcd(frac ia, b) = 1$,所以

    $$d(ij) = sum_{x|i}sum_{y|j} [gcd(frac ix, y) = 1] = sum_{x'|i}sum_{y|j} [gcd(x', y) = 1]$$

    于是

    $$egin{aligned}
     sum_{i=1}^Nsum_{j=1}^Md(ij)
    &=sum_{i=1}^Nsum_{j=1}^Msum_{x|i}sum_{y|j} [gcd(x, y) = 1]\
    &=sum_{x=1}^Nsum_{y=1}^M [gcd(x, y) = 1]leftlfloorfrac Nx ight floor leftlfloorfrac My ight floor
    end{aligned}$$

    我们令$f(d) = sum_{x=1}^Nsum_{y=1}^M [gcd(x, y) = d]leftlfloorfrac Nx ight floor leftlfloorfrac My ight floor$,有

    $$egin{aligned}
    sum_{n|d}f(d)
    &= sum_{x=1}^Nsum_{y=1}^M [n|gcd(x, y)]leftlfloorfrac Nx ight floor leftlfloorfrac My ight floor\
    &= sum_{i=1}^{leftlfloorfrac Nn ight floor}sum_{j=1}^{leftlfloorfrac Mn ight floor} leftlfloorfrac{leftlfloorfrac Nn ight floor}i ight floorleftlfloorfrac{leftlfloorfrac Mn ight floor}j ight floor
    end{aligned}$$

    如果我们令$t(n) = sum_{i=1}^n leftlfloorfrac ni ight floor$,那上式就等于$t(leftlfloorfrac Nn ight floor)t(leftlfloorfrac Mn ight floor)$

    于是$f(n) = sum_{n|d} mu(frac dn)t(leftlfloorfrac Nd ight floor)t(leftlfloorfrac Md ight floor)$

    $ans = f(1) = sum_{n=1}^{min(N, M)}mu(n)t(leftlfloorfrac Nn ight floor)t(leftlfloorfrac Mn ight floor)$

    预处理$mu(n)$的前缀和、$O(nsqrt n)$预处理所有$t(n)$,查询时$O(sqrt n)$即可。

    代码:

    #include <algorithm>
    #include <cstdio>
    typedef long long LL;
    const int N = 50050;
    LL t[N];
    LL calcT(int n) {
      LL ans = 0;
      for (int i = 1, last; i <= n; i = last + 1) {
        last = n / (n / i);
        ans += n / i * (last - i + 1);
      }
      return ans;
    }
    bool mark[N];
    int pr[N], pcnt = 0, mu[N], S[N];
    void getMu() {
      mu[1] = 1;
      for (int i = 2; i < N; ++i) {
        if (!mark[i]) mu[pr[pcnt++] = i] = -1;
        for (int j = 0; j < pcnt && (LL)i * pr[j] < N; ++j) {
          mark[i * pr[j]] = 1;
          if (!(i % pr[j])) {
            mu[i * pr[j]] = 0;
            break;
          }
          mu[i * pr[j]] = -mu[i];
        }
      }
      for (int i = 1; i < N; ++i) S[i] = S[i - 1] + mu[i];
    }
    LL solve(int n, int m) {
      LL ans = 0;
      for (int i = 1, last; i <= n && i <= m; i = last + 1) {
        last = std::min(n / (n / i), m / (m / i));
        ans += t[n / i] * t[m / i] * (S[last] - S[i - 1]);
      }
      return ans;
    }
    int main() {
      for (int i = 1; i < N; ++i) t[i] = calcT(i);
      getMu();
      int T, n, m;
      scanf("%d", &T);
      while (T--) {
        scanf("%d%d", &n, &m);
        printf("%lld
    ", solve(n, m));
      }
      return 0;
    }
    

      

  • 相关阅读:
    jenkins:用jenkins通过ssh部署jar包到远程linux机器(jdk 15 / jenkins 2.257)
    linux(centos8):安装java jdk 15 (java 15)
    38. 外观数列 迭代
    58. 最后一个单词的长度
    kmp字符串匹配
    单词规律
    1502. 判断能否形成等差数列
    1496. 判断路径是否相交
    1475. 商品折扣后的最终价格
    一维数组的动态和
  • 原文地址:https://www.cnblogs.com/y-clever/p/7379810.html
Copyright © 2011-2022 走看看