Description
Input
输入文件包含多组测试数据。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
7 4
5 6
Sample Output
121
HINT
1<=N, M<=50000
Solution
计算$d(ij)$时,我们把$ij$的每个约数$d$映射到$(gcd(d, i), frac{d}{gcd(d, i)})$,那么这两个数一定分别是$i, j$的因数,且$(a, b)$对应一个因数当且仅当$gcd(frac ia, b) = 1$,所以
$$d(ij) = sum_{x|i}sum_{y|j} [gcd(frac ix, y) = 1] = sum_{x'|i}sum_{y|j} [gcd(x', y) = 1]$$
于是
$$egin{aligned}
sum_{i=1}^Nsum_{j=1}^Md(ij)
&=sum_{i=1}^Nsum_{j=1}^Msum_{x|i}sum_{y|j} [gcd(x, y) = 1]\
&=sum_{x=1}^Nsum_{y=1}^M [gcd(x, y) = 1]leftlfloorfrac Nx
ight
floor leftlfloorfrac My
ight
floor
end{aligned}$$
我们令$f(d) = sum_{x=1}^Nsum_{y=1}^M [gcd(x, y) = d]leftlfloorfrac Nx ight floor leftlfloorfrac My ight floor$,有
$$egin{aligned}
sum_{n|d}f(d)
&= sum_{x=1}^Nsum_{y=1}^M [n|gcd(x, y)]leftlfloorfrac Nx
ight
floor leftlfloorfrac My
ight
floor\
&= sum_{i=1}^{leftlfloorfrac Nn
ight
floor}sum_{j=1}^{leftlfloorfrac Mn
ight
floor} leftlfloorfrac{leftlfloorfrac Nn
ight
floor}i
ight
floorleftlfloorfrac{leftlfloorfrac Mn
ight
floor}j
ight
floor
end{aligned}$$
如果我们令$t(n) = sum_{i=1}^n leftlfloorfrac ni ight floor$,那上式就等于$t(leftlfloorfrac Nn ight floor)t(leftlfloorfrac Mn ight floor)$
于是$f(n) = sum_{n|d} mu(frac dn)t(leftlfloorfrac Nd ight floor)t(leftlfloorfrac Md ight floor)$
$ans = f(1) = sum_{n=1}^{min(N, M)}mu(n)t(leftlfloorfrac Nn ight floor)t(leftlfloorfrac Mn ight floor)$
预处理$mu(n)$的前缀和、$O(nsqrt n)$预处理所有$t(n)$,查询时$O(sqrt n)$即可。
代码:
#include <algorithm>
#include <cstdio>
typedef long long LL;
const int N = 50050;
LL t[N];
LL calcT(int n) {
LL ans = 0;
for (int i = 1, last; i <= n; i = last + 1) {
last = n / (n / i);
ans += n / i * (last - i + 1);
}
return ans;
}
bool mark[N];
int pr[N], pcnt = 0, mu[N], S[N];
void getMu() {
mu[1] = 1;
for (int i = 2; i < N; ++i) {
if (!mark[i]) mu[pr[pcnt++] = i] = -1;
for (int j = 0; j < pcnt && (LL)i * pr[j] < N; ++j) {
mark[i * pr[j]] = 1;
if (!(i % pr[j])) {
mu[i * pr[j]] = 0;
break;
}
mu[i * pr[j]] = -mu[i];
}
}
for (int i = 1; i < N; ++i) S[i] = S[i - 1] + mu[i];
}
LL solve(int n, int m) {
LL ans = 0;
for (int i = 1, last; i <= n && i <= m; i = last + 1) {
last = std::min(n / (n / i), m / (m / i));
ans += t[n / i] * t[m / i] * (S[last] - S[i - 1]);
}
return ans;
}
int main() {
for (int i = 1; i < N; ++i) t[i] = calcT(i);
getMu();
int T, n, m;
scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &m);
printf("%lld
", solve(n, m));
}
return 0;
}