题目
前置
斯特林数(Longrightarrow)斯特林数及反演总结
做法
[egin{aligned}
ans_x&=sumlimits_{i=1}^ndis(i,x)^k\
&=sumlimits_{i=1}^nsumlimits_{j=0}^kegin{Bmatrix}k\jend{Bmatrix}C_{dis(i,x)}^jj!\
&=sumlimits_{j=0}^kegin{Bmatrix}k\jend{Bmatrix}j!sumlimits_{i=1}^nC_{dis(i,x)}^j\
&=sumlimits_{j=0}^kegin{Bmatrix}k\jend{Bmatrix}j!sumlimits_{i=1}^n(C_{dis(i,x)-1}^j+C_{dis(i,x)-1}^{j-1})
end{aligned}]
(f[x][j])表示(x)子树内,关于(x):(C_{dis(i,x)}^j)的答案
显然有(f[x][j]=sumlimits_{son}f[son][j]+f[son][j-1])
当这仅仅对于根有效,所以再做一遍换根(dp)
Code
#include<bits/stdc++.h>
typedef int LL;
const LL maxn=5e4+9,mod=10007,maxm=209;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}
return x*f;
}
struct node{
LL to,nxt;
}dis[maxn<<1];
LL n,num,K;
LL head[maxn],dp1[maxn][maxm],dp2[maxn][maxm],strl[maxm][maxm],tmp[maxm],fac[maxm];
inline void Add(LL u,LL v){
dis[++num]=(node){v,head[u]}; head[u]=num;
}
void Dfs1(LL u,LL f){
dp1[u][0]=1;
for(LL i=head[u];i;i=dis[i].nxt){
LL v(dis[i].to);
if(v==f) continue;
Dfs1(v,u);
for(LL j=1;j<=K;++j) dp1[u][j]=(dp1[u][j]+dp1[v][j]+dp1[v][j-1])%mod;
dp1[u][0]=(dp1[u][0]+dp1[v][0])%mod;
}
}
void Dfs2(LL u,LL f){
for(LL i=0;i<=K;++i) dp2[u][i]=dp1[u][i];
if(f){
for(LL i=1;i<=K;++i) tmp[i]=(dp2[f][i]-dp1[u][i]+mod-dp1[u][i-1]+mod)%mod;
tmp[0]=(dp2[f][0]-dp1[u][0]+mod)%mod;
for(LL i=1;i<=K;++i) dp2[u][i]=(dp2[u][i]+tmp[i]+tmp[i-1])%mod;
dp2[u][0]=(dp2[u][0]+tmp[0])%mod;
}
for(LL i=head[u];i;i=dis[i].nxt){
LL v(dis[i].to);
if(v==f) continue;
Dfs2(v,u);
}
}
int main(){
n=Read(); K=Read();
strl[0][0]=strl[1][1]=1;
for(LL i=2;i<=K;++i)
for(LL j=1;j<=i;++j)
strl[i][j]=(strl[i-1][j-1]+j*strl[i-1][j])%mod;
fac[0]=fac[1]=1;
for(LL i=2;i<=K;++i) fac[i]=fac[i-1]*i%mod;
for(LL i=1;i<n;++i){
LL u(Read()),v(Read());
Add(u,v); Add(v,u);
}
Dfs1(1,0); Dfs2(1,0);
for(LL i=1;i<=n;++i){
LL ret(0);
for(LL j=0;j<=K;++j) ret=(ret+1ll*strl[K][j]*fac[j]*dp2[i][j])%mod;
printf("%d
",ret);
}
return 0;
}