zoukankan      html  css  js  c++  java
  • SDOI2016 R1 解题报告 bzoj4513~bzoj4518

    储能表

      将n, m分解为二进制,考虑一个log(n)层的trie树,n会在这颗trie树上走出了一个路径,因为 行数 $ le n$,所以在n的二进制路径上,每次往1走的时候,与m计算贡献,m同样处理,$O(Tlog(n)log(m))$

      当然可以数位dp, $f_{i, n, m, k}$分别代表考虑到第i位,与n, m, k的大小关系,不是很好写,就写了上面的方法。

     1 #include <bits/stdc++.h>
     2 #define rep(i, a, b) for (int i = a; i <= b; i++)
     3 #define drep(i, a, b) for (int i = a; i >= b; i--)
     4 #define REP(i, a, b) for (int i = a; i < b; i++)
     5 #define pb push_back
     6 #define mp make_pair
     7 #define xx first
     8 #define yy second
     9 using namespace std;
    10 typedef long long ll;
    11 typedef pair<int, int> pii;
    12 typedef unsigned long long ull;
    13 const int inf = 0x3f3f3f3f;
    14 const ll INF = 0x3f3f3f3f3f3f3f3fll;
    15 template <typename T> void Max(T& a, T b) { if (b > a) a = b; }
    16 //*********************************
    17 
    18 ll n, m, k, mod;
    19 
    20 ll POW(ll base, ll num) {
    21     ll ret = 1;
    22     while (num) {
    23         if (num & 1) ret = ret * base % mod;
    24         base = base * base % mod;
    25         num >>= 1;
    26     }
    27     return ret;
    28 }
    29 
    30 ll calc(ll st, ll num) {
    31     if (st < 0) { num += st; st = 0; }
    32     if (num <= 0) return 0;
    33     ll t1 = 2 * st + num - 1;
    34     if (t1 & 1) num >>= 1;
    35     else t1 >>= 1;
    36     return t1 % mod * (num % mod) % mod;
    37 }
    38 ll solve(ll x, ll y, ll i, ll j) {
    39     ll ret(0);
    40     if (j > i) swap(i, j), swap(x, y);
    41     ll z = x ^ (y ^ (y & ((1ll << i) - 1)));
    42     ret = calc(z - k, 1ll << i);
    43     return (ret * ((1ll << j) % mod)) % mod;
    44 }
    45 int main() {
    46     /*
    47     freopen("table.in", "r", stdin);
    48     freopen("table.out", "w", stdout);
    49     */
    50     int T; scanf("%d", &T);
    51     while (T--) {
    52         scanf("%lld%lld%lld%lld", &n, &m, &k, &mod);
    53         
    54         ll x(0);
    55         ll ans(0);
    56         drep(i, 62, 0) if (n >> i & 1) {
    57             ll y(0);
    58             drep(j, 62, 0) if (m >> j & 1) {
    59                 (ans += solve(x, y, i, j)) %= mod;
    60                 y |= 1ll << j;
    61             }
    62             x |= 1ll << i;
    63         }
    64         
    65         printf("%lld
    ", ans);
    66     }
    67 }
    table

    数字配对

      网络流,首先这个图不是奇环,这个图如果有环,那么结构应该是对称的?【我也不是非常清楚,求教。。。】

      把费用和容量连成边,进行二分图染色,一直增广到费用加上当前费用小于0为止,别忘了考虑最后一次的流量。

    #include <bits/stdc++.h>
    #define rep(i, a, b) for (int i = a; i <= b; i++)
    #define drep(i, a, b) for (int i = a; i >= b; i--)
    #define REP(i, a, b) for (int i = a; i < b; i++)
    #define pb push_back
    #define mp make_pair
    #define xx first
    #define yy second
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    const int inf = 0x3f3f3f3f;
    const ll INF = 0x3f3f3f3f3f3f3f3fll;
    template <typename T> void Max(T& a, T b) { if (b > a) a = b; }
    //*********************************
    
    const int maxn = 205;
    
    struct Ed {
        int u, v, c; ll w; int nx; Ed() {}
        Ed(int _u, int _v, int _c, ll _w, int _nx) :
        u(_u), v(_v), c(_c), w(_w), nx(_nx) {}
    } E[maxn * maxn << 1];
    int G[maxn], edtot = 1;
    void addedge(int u, int v, int c, ll w) {
        E[++edtot] = Ed(u, v, c, w, G[u]);
        G[u] = edtot;
        E[++edtot] = Ed(v, u, 0, -w, G[v]);
        G[v] = edtot;
    }
    
    bool judge(int num) {
        int sqr = sqrt(num);
        if (num == 1) return 0;
        rep(i, 2, sqr) if (num % i == 0) return 0;
        return 1;
    }
    int s, t;
    int knd[maxn];
    int n;
    int a[maxn], b[maxn], c[maxn];
    void dfs(int x, int col) {
        knd[x] = col;
        for (int i = 1; i <= n; i++) if (knd[i] == -1 && (a[i] % a[x] == 0 && judge(a[i] / a[x]) || a[x] % a[i] == 0 && judge(a[x] / a[i]))) dfs(i, col ^ 1);
    }
    
    ll dis[maxn]; int pre[maxn];
    bool spfa() {
        rep(i, 1, n + 2) dis[i] = -INF;
        static int que[maxn]; int qh(0), qt(0);
        static int vis[maxn]; memset(vis, 0, sizeof(vis));
        vis[que[++qt] = s] = 1; dis[s] = 0;
        while (qh != qt) {
            int x = que[++qh]; if (qh == maxn - 1) qh = 0;
            for (int i = G[x]; i; i = E[i].nx) if (E[i].c && dis[E[i].v] < dis[x] + E[i].w) {
                dis[E[i].v] = dis[x] + E[i].w; pre[E[i].v] = i;
                if (!vis[E[i].v]) {
                    vis[que[++qt] = E[i].v] = 1;
                    if (qt == maxn - 1) qt = 0;
                }
            }
            vis[x] = 0;
        }
        return dis[t] != -INF;
    }
    int ans; ll cost;
    bool mcf() {
        int flow = inf; ll nm(0);
        for (int i = pre[t]; i; i = pre[E[i].u]) { flow = min(flow, E[i].c); nm += E[i].w; }
        if (nm * flow + cost < 0) {
            ans += cost / -nm;
            return 0;
        }
        ans += flow, cost += nm * flow;
        for (int i = pre[t]; i; i = pre[E[i].u]) E[i].c -= flow, E[i ^ 1].c += flow;
        return 1;
    }
    
    int main() {
        /*
        freopen("pair.in", "r", stdin);
        freopen("pair.out", "w", stdout);
        */
        scanf("%d", &n);
        rep(i, 1, n) scanf("%d", a + i);
        rep(i, 1, n) scanf("%d", b + i);
        rep(i, 1, n) scanf("%d", c + i);
        
        memset(knd, -1, sizeof(knd));
        rep(i, 1, n) if (knd[i] == -1) dfs(i, 0);
        
        rep(i, 1, n) rep(j, 1, n) if (knd[i] == 1 && knd[j] == 0) {
            if (a[i] % a[j] == 0 && judge(a[i] / a[j]) || a[j] % a[i] == 0 && judge(a[j] / a[i])) addedge(i, j, min(b[i], b[j]), 1ll * c[i] * c[j]);
        }
        s = n + 1, t = n + 2;
        rep(i, 1, n) if (knd[i]) addedge(s, i, b[i], 0); else addedge(i, t, b[i], 0);
        
        while (spfa()) if (!mcf()) break;
        
        cout << ans << endl;
    }
    pair

    游戏

      树链剖分,考虑树链剖分时,每一次的修改均是连续的一段,我们对每一段维护标记$ax + b$x为当前点到这一段起点的距离。

      那么假如有新的标记$Ax + B$,我们讨论$Ax + B <= ax + b$的情况,如果影响范围在mid的一边,就把新的标记向一边推,如果新的标记覆盖了多余一半,我们将新标记放在当前节点上,将原来的标记向不足mid的部分下推。

      可以说是把标记永久化了。

      复杂度为$O(mlog^{3}n)$,树链剖分两个log,标记一次最多下推log层。

      1 #include <bits/stdc++.h>
      2 #define rep(i, a, b) for (int i = a; i <= b; i++)
      3 #define drep(i, a, b) for (int i = a; i >= b; i--)
      4 #define REP(i, a, b) for (int i = a; i < b; i++)
      5 #define pb push_back
      6 #define mp make_pair
      7 #define xx first
      8 #define yy second
      9 using namespace std;
     10 typedef long long ll;
     11 typedef pair<int, int> pii;
     12 typedef unsigned long long ull;
     13 const int inf = 0x3f3f3f3f;
     14 const ll INF = 0x3f3f3f3f3f3f3f3fll;
     15 template <typename T> void Max(T& a, T b) { if (b > a) a = b; }
     16 //*********************************
     17 
     18 const int maxn = 100005;
     19 
     20 struct Ed {
     21     int u, v, w, nx; Ed() {}
     22     Ed(int _u, int _v, int _w, int _nx) :
     23         u(_u), v(_v), w(_w), nx(_nx) {}
     24 } E[maxn << 1];
     25 int G[maxn], edtot;
     26 
     27 void addedge(int u, int v, int w) {
     28     E[++edtot] = Ed(u, v, w, G[u]);
     29     G[u] = edtot;
     30     E[++edtot] = Ed(v, u, w, G[v]);
     31     G[v] = edtot;
     32 }
     33 
     34 int pre[maxn], dep[maxn], son[maxn], sz[maxn];
     35 ll dis[maxn];
     36 int f[maxn][18];
     37 int dfs(int x, int fa) {
     38     pre[x] = fa, dep[x] = dep[fa] + 1; f[x][0] = fa;
     39     for (int i = 1; i <= 17; i++) f[x][i] = f[f[x][i - 1]][i - 1];
     40     son[x] = 0, sz[x] = 1;
     41     for (int i = G[x]; i; i = E[i].nx) if (E[i].v != fa) {
     42         dis[E[i].v] = dis[x] + E[i].w;
     43         sz[x] += dfs(E[i].v, x);
     44         if (sz[E[i].v] > sz[son[x]]) son[x] = E[i].v;
     45     }
     46     return sz[x];
     47 }
     48 int pos[maxn], inv[maxn], top[maxn], ndtot;
     49 void repos(int x, int tp) {
     50     top[x] = tp; pos[x] = ++ndtot; inv[ndtot] = x;
     51     if (son[x]) repos(son[x], tp);
     52     for (int i = G[x]; i; i = E[i].nx) if (E[i].v != son[x] && E[i].v != pre[x]) repos(E[i].v, E[i].v);
     53 }
     54 
     55 int LCA(int l, int r) {
     56     if (dep[l] < dep[r]) swap(l, r);
     57     int t = dep[l] - dep[r];
     58     drep(i, 17, 0) if (t >> i & 1) l = f[l][i];
     59     if (l == r) return l;
     60     drep(i, 17, 0) if (f[l][i] != f[r][i]) l = f[l][i], r = f[r][i];
     61     return f[l][0];
     62 }
     63 
     64 ll Min[maxn << 2];
     65 ll A[maxn << 2], B[maxn << 2], Flag[maxn << 2];
     66 void pushup(int o, int l, int r) {
     67     if (Flag[o]) Min[o] = min(B[o], A[o] * (dis[inv[r]] - dis[inv[l]]) + B[o]);
     68     if (l != r) Min[o] = min(Min[o], min(Min[o << 1], Min[o << 1 | 1]));
     69 }
     70 void giveFlag(int o, int l, int r, ll a, ll b) {
     71     if (!Flag[o]) { A[o] = a, B[o] = b; Flag[o] = 1; }
     72     else {
     73         int mid = l + r >> 1; ll len = dis[inv[mid + 1]] - dis[inv[l]];
     74         if (A[o] == a || l == r) B[o] = min(B[o], b);
     75         else if (a > A[o] && B[o] < b);
     76         else if (a > A[o] && B[o] >= b) {
     77             ll d = (B[o] - b) / (a - A[o]);
     78             if (d < len) giveFlag(o << 1, l, mid, a, b);
     79             else {
     80                 swap(A[o], a), swap(B[o], b);
     81                 giveFlag(o << 1 | 1, mid + 1, r, a, b + a * len);
     82             }
     83         }
     84         else if (a < A[o] && B[o] > b) swap(A[o], a), swap(B[o], b);
     85         else if (a < A[o] && B[o] <= b) {
     86             ll d = (B[o] - b - 1) / (a - A[o]) + 1;
     87             if (d >= len) giveFlag(o << 1 | 1, mid + 1, r, a, b + a * len);
     88             else {
     89                 swap(A[o], a), swap(B[o], b);
     90                 giveFlag(o << 1, l, mid, a, b);
     91             }
     92         }
     93     }
     94 
     95     pushup(o, l, r);
     96 }
     97 
     98 void modify(int o, int l, int r, int ql, int qr, ll a, ll b) {
     99     if (ql <= l && r <= qr) {
    100         giveFlag(o, l, r, a, b + a * (dis[inv[l]] - dis[inv[ql]]));
    101         return;
    102     }
    103 
    104     int mid = l + r >> 1;
    105     if (ql <= mid) modify(o << 1, l, mid, ql, qr, a, b);
    106     if (qr > mid) modify(o << 1 | 1, mid + 1, r, ql, qr, a, b);
    107     pushup(o, l, r);
    108 }
    109 
    110 int n;
    111 void modify2(int tar, int x, ll a, ll b) {
    112     while (top[tar] != top[x]) {
    113         int F = top[x];
    114         modify(1, 1, n, pos[F], pos[x], a, b + a * (dis[F] - dis[tar]));
    115         x = pre[F];
    116     }
    117 
    118     modify(1, 1, n, pos[tar], pos[x], a, b);
    119 }
    120 
    121 void modify(int l, int r, ll a, ll b) {
    122     int lca = LCA(l, r);
    123     modify2(lca, l, -a, b + a * (dis[l] - dis[lca]));
    124     modify2(lca, r, a, b + a * (dis[l] - dis[lca]));
    125 }
    126 
    127 ll query(int o, int l, int r, int ql, int qr) {
    128     ll ret = INF;
    129     if (Flag[o]) {
    130         int L = max(l, ql), R = min(r, qr);
    131         ret = min(A[o] * (dis[inv[L]] - dis[inv[l]]) + B[o], A[o] * (dis[inv[R]] - dis[inv[l]]) + B[o]);
    132     }
    133 
    134     if (ql <= l && r <= qr) return min(ret, Min[o]);
    135     else {
    136         int mid = l + r >> 1;
    137         if (ql <= mid) ret = min(ret, query(o << 1, l, mid, ql, qr));
    138         if (qr > mid) ret = min(ret, query(o << 1 | 1, mid + 1, r, ql, qr));
    139     }
    140     return ret;
    141 }
    142 
    143 ll solve(int l, int r) {
    144     ll ret = INF;
    145     while (top[l] != top[r]) {
    146         if (dep[top[l]] < dep[top[r]]) swap(l, r);
    147         ret = min(ret, query(1, 1, n, pos[top[l]], pos[l]));
    148         l = pre[top[l]];
    149     }
    150     if (dep[l] < dep[r]) swap(l, r);
    151     ret = min(ret, query(1, 1, n, pos[r], pos[l]));
    152 
    153     return ret;
    154 }
    155 
    156 int main() {
    157     /*
    158     freopen("game.in", "r", stdin);
    159     freopen("game.out", "w", stdout);
    160     */
    161     int m; scanf("%d%d", &n, &m);
    162     REP(i, 1, n) {
    163         int u, v, w; scanf("%d%d%d", &u, &v, &w);
    164         addedge(u, v, w);
    165     }
    166 
    167     dfs(1, 1), repos(1, 1);
    168 
    169     REP(i, 0, maxn << 2) Min[i] = 123456789123456789ll;
    170 
    171     while (m--) {
    172         int op; scanf("%d", &op);
    173         if (op == 1) {
    174             int u, v, a, b; scanf("%d%d%d%d", &u, &v, &a, &b);
    175             modify(u, v, a, b);
    176         }
    177         else {
    178             int s, t; scanf("%d%d", &s, &t);
    179             printf("%lld
    ", solve(s, t));
    180         }
    181     }
    182 
    183     return 0;
    184 }
    game

    生成魔咒

      后缀数组,将字符串反过来,维护一个set,每次加入的字符串找到位置,计算贡献。

    #include <bits/stdc++.h>
    #define rep(i, a, b) for (register int i = a; i <= b; i++)
    #define drep(i, a, b) for (register int i = a; i >= b; i--)
    #define REP(i, a, b) for (int i = a; i < b; i++)
    #define pb push_back
    #define mp make_pair
    #define clr(x) memset(x, 0, sizeof(x))
    #define xx first
    #define yy second
    
    using namespace std;
    
    typedef long long ll;
    typedef pair<int, int> pii;
    const int inf = 0x3f3f3f3f;
    const ll INF = 0x3f3f3f3f3f3f3f3fll;
    //********************************
    
    const int maxn = 100005;
    
    int a[maxn], hsh[maxn], cd;
    int sa[maxn], t[maxn], t2[maxn], c[maxn], n;
    
    void build_sa(int m) {
        int *x = t, *y = t2;
        rep(i, 0, m) c[i] = 0;
        rep(i, 1, n) c[x[i] = a[i]]++;
        rep(i, 1, m) c[i] += c[i - 1];
        drep(i, n, 1) sa[c[x[i]]--] = i;
    
        for (int k = 1; k <= n; k <<= 1) {
            int p = 0;
            rep(i, n - k + 1, n) y[++p] = i;
            rep(i, 1, n) if (sa[i] > k) y[++p] = sa[i] - k;
    
            rep(i, 0, m) c[i] = 0;
            rep(i, 1, n) c[x[y[i]]]++;
            rep(i, 1, m) c[i] += c[i - 1];
            drep(i, n, 1) sa[c[x[y[i]]]--] = y[i];
    
            swap(x, y);
            p = 1; x[sa[1]] = 0;
            rep(i, 2, n)
                x[sa[i]] = y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p - 1 : p++;
            if (p >= n) break;
            m = p;
        }
    }
    
    int rnk[maxn], height[maxn];
    void build_height() {
        int k(0);
        rep(i, 1, n) rnk[sa[i]] = i;
        rep(i, 1, n) {
            if (k) k--;
            int j = sa[rnk[i] - 1];
            while (a[j + k] == a[i + k]) k++;
            height[rnk[i]] = k;
        }
    }
    
    int Min[maxn][20], Log[maxn];
    void build_st() {
        Log[1] = 0;
        rep(i, 2, n) {
            Log[i] = Log[i - 1];
            if (1 << Log[i] + 1 == i) Log[i]++;
        }
        drep(i, n, 1) {
            Min[i][0] = height[i];
            for (int j = 1; i + (1 << j) - 1 <= n; j++)
                Min[i][j] = min(Min[i][j - 1], Min[i + (1 << j - 1)][j - 1]);
        }
    }
    int query(int l, int r) {
        int len = r - l + 1, k = Log[len];
        return min(Min[l][k], Min[r - (1 << k) + 1][k]);
    }
    
    int main() {
        scanf("%d", &n);
        rep(i, 1, n) scanf("%d", a + i), hsh[i] = a[i]; cd = n;
        sort(hsh + 1, hsh + 1 + n), cd = unique(hsh + 1, hsh + 1 + cd) - hsh - 1;
        rep(i, 1, n) a[i] = lower_bound(hsh + 1, hsh + 1 + cd, a[i]) - hsh;
        rep(i, 1, n / 2) swap(a[i], a[n - i + 1]);
    
        a[++n] = 0;
        a[n + 1] = inf;
        build_sa(cd);
        build_height();
    
        build_st();
        ll ans(0);
        set <int> S; S.insert(-inf), S.insert(inf);
        drep(i, n - 1, 1) {
            set<int> :: iterator H = S.lower_bound(rnk[i]), P = S.upper_bound(rnk[i]);
            int A, B;
            if (H != S.begin()) A = *--H; else A = -inf;
            B = *P;
            if (A != -inf) ans += query(min(rnk[i], A) + 1, max(rnk[i], A));
            if (B != inf) ans += query(min(rnk[i], B) + 1, max(rnk[i], B));
            if (A != -inf && B != inf) ans -= query(min(A, B) + 1, max(A, B));
            printf("%lld
    ", 1ll * (n - i) * (n - i - 1) / 2 + n - i - ans);
            S.insert(rnk[i]);
        }
        return 0;
    }
    incantation

    排列计数

      组合数*错排数

        $f_{n} = (n - 1)(f_{n - 1} + f_{n - 2})$

     1 #include <bits/stdc++.h>
     2 #define rep(i, a, b) for (long long i = a; i <= b; i++)
     3 #define drep(i, a, b) for (long long i = a; i >= b; i--)
     4 #define REP(i, a, b) for (long long i = a; i < b; i++)
     5 #define pb push_back
     6 #define mp make_pair
     7 #define xx first
     8 #define yy second
     9 using namespace std;
    10 typedef long long ll;
    11 typedef pair<int, int> pii;
    12 const int inf = 0x3f3f3f3f;
    13 const ll INF = 0x3f3f3f3f3f3f3f3fll;
    14 template <typename T> void Max(T& a, T b) { if (b > a) a = b; }
    15 //*********************************
    16 
    17 const int maxn = 1000005;
    18 const int mod = 1e9 + 7;
    19 
    20 ll fac[maxn];
    21 ll f[maxn];
    22 void prepare() {
    23     f[0] = 1, f[1] = 0, f[2] = 1;
    24     rep(n, 3, 1000000) f[n] = ((n - 1) * (n - 1) % mod * f[n - 2] % mod + (n - 1) * (n - 2) % mod * f[n - 3] % mod) % mod;
    25 
    26     fac[0] = 1;
    27     rep(n, 1, 1000000) fac[n] = fac[n - 1] * n % mod;
    28 }
    29 
    30 ll POW(ll base, int num) {
    31     ll ret = 1;
    32     while (num) {
    33         if (num & 1) ret = ret * base % mod;
    34         base = base * base % mod;
    35         num >>= 1;
    36     }
    37     return ret;
    38 }
    39 ll C(int n, int m) {
    40     ll ret = fac[n];
    41     ret = ret * POW(fac[n - m], mod - 2) % mod;
    42     ret = ret * POW(fac[m], mod - 2) % mod;
    43     return ret;
    44 }
    45 int main() {
    46     prepare();
    47     int T; scanf("%d", &T);
    48     while (T--) {
    49         int n, m; scanf("%d%d", &n, &m);
    50         if (n < m) puts("0");
    51         else printf("%lld
    ", C(n, m) * f[n - m] % mod);
    52     }
    53     return 0;
    54 }
    permutation

    征途

      $s^{2} = frac{sumlimits_{i = 1}^{m}(x_{i} - overline{x})^{2}}{m}$,将$(x_{i} - overline{x})^{2}$展开,会发现我们其实要最小化$sumlimits_{i = 1}^{m}x_{i}^{2}$

      设$f_{i,j}$代表dp到第i位(包括i),是第j段的最小平方和。

      那么$f_{i,j} = min(f_{k,j - 1}) + (s_{i}-s_{k})^{2}$, s为前缀和。

      固定j以后发现只与k有关,斜率优化即可。

    #include <bits/stdc++.h>
    #define rep(i, a, b) for (int i = a; i <= b; i++)
    #define drep(i, a, b) for (int i = a; i >= b; i--)
    #define REP(i, a, b) for (int i = a; i < b; i++)
    #define pb push_back
    #define mp make_pair
    #define xx first
    #define yy second
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    typedef unsigned long long ull;
    const int inf = 0x3f3f3f3f;
    const ll INF = 0x3f3f3f3f3f3f3f3fll;
    template <typename T> void Max(T& a, T b) { if (b > a) a = b; }
    //*********************************
    
    const int maxn = 3005;
    
    ll f[maxn], s[maxn], a[maxn];
    inline ll p(ll num) { return num * num; }
    
    struct HH {
        ll x, y;
    };
    double k(HH A, HH B) { return (double)(A.y - B.y) / (A.x - B.x); }
    
    int main() {
        int n, m; scanf("%d%d", &n, &m);
        rep(i, 1, n) scanf("%lld", a + i), s[i] = s[i - 1] + a[i];
    
        rep(i, 1, n) f[i] = p(s[i]);
    
        rep(j, 2, m) {
            static HH que[maxn]; int qh = 1, qt(0);
            rep(i, 1, n) {
                HH t = (HH) {s[i], f[i] + p(s[i])};
                while (qt > qh && k(que[qt], t) < k(que[qt - 1], que[qt])) qt--;
                que[++qt] = t;
    
                while (qt > qh && k(que[qh], que[qh + 1]) < 2 * s[i]) qh++;
    
                f[i] = que[qh].y - p(que[qh].x) + p(s[i] - que[qh].x);
            }
        }
    
        cout << m * f[n] - p(s[n]) << endl;
    
        return 0;
    }
    journey

     

  • 相关阅读:
    选择排序
    冒泡排序
    排序介绍
    如何在服务器搭建JavaWeb项目环境(阿里轻量级)
    SSM整合配置文件
    如何删干净MySQL数据库
    spring概述
    Git简单命令
    第六天——读操作(二)
    第六天——文件操作(一)
  • 原文地址:https://www.cnblogs.com/y7070/p/5406839.html
Copyright © 2011-2022 走看看