zoukankan      html  css  js  c++  java
  • NUC_HomeWork1 -- POJ1068

    A - Parencodings
    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: 
    q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). 
    q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence). 

    Following is an example of the above encodings: 

    S (((()()())))
    P-sequence 4 5 6666
    W-sequence 1 1 1456

    Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string. 

    Input

    The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

    Output

    The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

    Sample Input

    2
    6
    4 5 6 6 6 6
    9 
    4 6 6 6 6 8 9 9 9
    

    Sample Output

    1 1 1 4 5 6
    1 1 2 4 5 1 1 3 9
     今天wj说,这道题模拟就好,用不了多长时间,结果我想了一晚上,用递推的方法做的,不知道他是怎么想的,能A出来,很开心
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    
    const int maxn = 50;
    
    void print(int ans[], int n)///打印函数,其实是在中间查错的时候写的,后来就直接用了
    {
         printf("%d", ans[1]);
        for(int i = 2; i <= n; ++i)
        {
            printf(" %d", ans[i]);
        }
        puts("");
    }
    
    int main()
    {
    #ifdef  LOCAL                       ///重定向第一发忘记删了,错了T_T
        freopen("in.txt", "r", stdin);
    #endif
        int t, n;
        int arr1[maxn], arr2[maxn], ans[maxn];///我的想法是,预处理arr2数组用以放在此坐标左侧有几个半括号
        bool tag[maxn];                        ///预处理ans数组,每次值变化,都会从“1”开始,然后就处理不是“1”的值
        scanf("%d", &t);                       ///用tag数组标记被处理过的值,
        while(t--)
        {
            memset(tag, false, sizeof(tag));
            scanf("%d", &n);
            for(int i = 1; i <= n; ++i)
                scanf("%d", &arr1[i]);
    
            ans[1] = 1;
            arr2[1] = arr1[1] - 1;
            for(int i = 2; i <= n; ++i)     ///进行一次预处理,将所有为 “1” 的情形记录
            {
                arr2[i] = arr1[i] - arr1[i-1] - 1;
                arr2[i] = (arr2[i] < 0) ? 0 : arr2[i];
                ans[i] = (arr1[i] > arr1[i-1]) ? 1 : 0;
            }
    
            int i, k;
            int sum = 0;
            for(i = 2; i <= n; ++i)
            {
                if(ans[i] == 0)
                {
                    for(k = i-1; k > 0; --k)              ///往前找无非两种情况可以累加
                    {                                      ///没有被标记过的且arr2值为0,和没有被标记过的且arr2值不为0
                        if((tag[k] == false) && (arr2[k] == 0))
                        {
                            sum += ans[k];
                            tag[k] = true;                  ///刚开始也DB了, 用于 “==”,查了半天
                        }
                        else if((tag[k] == false) && arr2[k])
                        {
                            arr2[i] = --arr2[k];
                            arr2[k] = 0;
                            sum += ans[k] + 1;              ///找到arr2值不为‘0’,就arr2值转移到 i 身上。到这步就到底了
                            tag[k] = true;
                            //printf("%d
    ", arr2[i]);
                            break;
                        }
                    }
                    ans[i] = sum;
                    sum = 0;
                }
            }
    
           print(ans, n);
        }
        return 0;
    }
     
  • 相关阅读:
    设计模式之里氏替换原则
    设计模式之依赖倒置原则讲解
    条款10 若不想使用编译器自动生成的函数,就该明确拒绝
    Django---常用字段和参数
    Python中abc
    Python中鸭子类型
    Python多继承的正确打开方式:mixins机制
    python新式类和经典类的区别
    Django---drf权限、频率、过滤、排序、异常处理
    删库跑路技巧 删库跑路命令
  • 原文地址:https://www.cnblogs.com/ya-cpp/p/4061011.html
Copyright © 2011-2022 走看看