zoukankan      html  css  js  c++  java
  • pytroch resnet构建过程理解

    class ResNet(nn.Module):
      def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                     bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change   第一次pooling
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        # it is slightly better whereas slower to set stride = 1
        # self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)
    
        for m in self.modules():
          if isinstance(m, nn.Conv2d):
            n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            m.weight.data.normal_(0, math.sqrt(2. / n))
          elif isinstance(m, nn.BatchNorm2d):
            m.weight.data.fill_(1)
            m.bias.data.zero_()
    
      def  _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
          downsample = nn.Sequential(
            nn.Conv2d(self.inplanes, planes * block.expansion,
                  kernel_size=1, stride=stride, bias=False),
            nn.BatchNorm2d(planes * block.expansion),
          )
    
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
          layers.append(block(self.inplanes, planes))
    
        return nn.Sequential(*layers)
    
      def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)                 
    
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
    
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
    
        return x
    

      

  • 相关阅读:
    自学Linux命令的四种方法
    linux命令学习
    设计师提高效率必备的10大在线工具
    基于CNN网络的汉字图像字体识别及其原理
    字库的产生
    开篇
    智能建筑系统集成发展目标——节能建筑
    建筑节能案例解析:拜尔的生态幼儿园
    能源管理系统(Synchro EMS)技术架构
    能源管理系统(Synchro EMS)
  • 原文地址:https://www.cnblogs.com/ya-cpp/p/9648569.html
Copyright © 2011-2022 走看看