zoukankan      html  css  js  c++  java
  • Hadoop_19_MapReduce&&Yarn运行机制

    1.YARN的运行机制

    1.1.概述:

    Yarn集群:负责海量数据运算时的资源调度,集群中的角色主要有:ResourceManager、NodeManager

      Yarn是一个资源调度(作业调度和集群资源管理)平台,负责为运算程序提供服务器运算资源(包括运行

    程序的jar包,配置文件,CPU,内存,IO等),相当于一个分布式的操作系统平台,而Mapreduce等运算程

    序则相当于运行于操作系统之上的应用程序

      Linux的资源隔离机制cgroup实现了CPU和内存的隔离(一个程序分配单独的CPU和内存),从而给不同的进

    程分开运算资源,其中虚拟化技术就是做这种资源隔离的,例如Docker、OpenStack等,在NodeManager中的

    运行容器Container就包含了一定的CPU+内存

    1.2.YARN的重要概念:

      1.Yarn只负责程序运行所需资源的分配回收等调度任务,与用户提交的应用程序的内部运行机制完全

    无关,所以Yarn已经成为一个通用的资源调度平台,许多运算框架都可以借助它来实现资源调度,如spark

    storm,从而提高资源利用率,方便数据共享

      2.yarn只提供运算资源的调度(用户程序向yarn申请资源,yarn就负责分配资源)

      3.yarn中的主管角色叫ResourceManager

      4.yarn中具体提供运算资源的角色叫NodeManager

      5.这样一来,yarn其实就与运行的用户程序完全解耦,就意味着yarn上可以运行各种类型的分布式运算程

    序(mapreduce只是其中的一种),比如mapreduce、storm程序,spark程序,tez ……只要他们各自的框架中

    有符合yarn规范的资源请求机制即可

    1.3.MR运行在YARN集群的流程分析:

    详细步骤说明:

    提交过程

    1. 当客户端(jobclient)提交一个MapReduce程序(作业/job submission)后,将获取到一个跟Yarn通信的客户端程序YarnRunner,它本质上是一个动态代理对象。它负责将任务提交到Yarn集群中
    2. 接着,YarnRunner根据配置文件yarn-site.xml(yarn.resoucemanager.hostname)中的配置信息向ResourceManager申请提交一个Application,此时ResourceManager会返回一个Application资源提交路径hdfs://xxx/.staging以及job_id
    3. 提交程序运行所需资源到ResourceManager指定的HDFS目录中,包含job.split(任务的切片规划)job.xmljob.jar等,然后通知ResourceManagerjob的资源文件提交完成,申请运行MRAppMaster

    运行过程

    1. 由于ResourceManager会接收很多程序,而运算资源是有限的。因此不能保证每个任务一提交就能运行,所以需要有一个调度机制(调度策略包括FIFOFirst Input First Output,先入先出队列;FairCapacity)
    2. 然后由ResourceManagerJob封装成一个Task对象放入任务调度队列
    3. NodeManagerResourceManager通信,领取需要运行的Task任务,并根据Task的任务描述,由NodeManager生成任务运行的容器container,并从HDFS上把任务需要的文件下载下来,放到container的工作目录中,启动MRAppmaster在该容器中运行
    4. MRAppmaster请求ResourceManager分配若干个Container来启动MapTask,此时ResourceManager同样会将Task放入队列中,NodeManagerResourceManager通信时,会领取这个Task。然后由NodeManager创建一个容器,有了容器后,MRAppmaster会发送启动程序的脚本给NodeManagerMapTask就运行起来。并由MRAppmaster进行监管,如果某个MapTask失败了,MRAppmaster会申请一个新的容器去再运行这个MapTask
    5. 等到MapTask运行完毕之后,输出结果保存在container的工作目录下面
    6. MRAppmaster再申请容器运行ReduceTask
    7. ReduceTask运行起来以后,会去下载MapTask的输出结果,每个ReduceTask获取自己相应的分区数据,
    8. ReduceTask执行完毕后,MRAppmaster会向ResourceManager注销自己,YARN会回收所有的计算资源

    总结:1. Yarn只负责程序运行所需要资源的分配回收等调度任务,和MapReduce程序只需要请求资源和Yarn并没有什么耦合。所以许许多多的其他的程序也可以在YARN上运行,比如说SparkStorm

         2. Hadoop1中没有Yarn,它使用JobTrackerTaskTracker。客户端提交任务给JobTrackerJobTracker负责启动MapTaskReduceTaskJobTracker知道我们的程序是怎么运行的,即JobTrackerMR程序是紧紧耦合在一起的,JobTracker只有一个节点,要负责资源调度和应用的运算流程管理监控,如果JobTracker挂了,所有的程序都不能运行了,而Hadoop2MRAppmaster一旦挂了,只会影响到当前这一个程序

     

      

      

      

  • 相关阅读:
    自定义控件类
    初探ListView和Adapter
    探究android控件及布局
    页面布局之一边固定一边自适应
    cavans 文字换行
    移动开发01 页面取消横向滚动条
    移动端rem,scale动态设置
    map,area标签
    css3属性——border-radius用法
    z-index要同级比较,absolute包含块外有overflow-hidden
  • 原文地址:https://www.cnblogs.com/yaboya/p/9228921.html
Copyright © 2011-2022 走看看