问题描述:
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6 th prime is 13.
What is the 10001 st prime number?
问题分析:
如果要大量求素数的话,比较快速的方法是“筛法( sieve )”。 其速度很快,但其需要知道上限,这个题目没有给,猜吧,我猜110000(实际上,110000下面有10453个素数)。
筛法求素数可以如下描述(抄自维基百科):
Eratosthenes' method:
- Create a list of consecutive integers from two to n : (2, 3, 4, ..., n ).
- Initially, let p equal 2, the first prime number.
- Strike from the list all multiples of p less than or equal to n . ( 2p, 3p, 4p, etc. )
- Find the first number remaining on the list after p (this number is the next prime); replace p with this number.
- Repeat steps 3 and 4 until p 2 is greater than n .
- All the remaining numbers in the list are prime.
参考代码:
#define SZ 110000
char buffer[SZ];
void iniBuffer()
{
buffer[0] = buffer[1] = 'F';
int p = sqrt(SZ);
int i, j;
for(i=2; i<=p; i++)
{
if(buffer[i]!='F')
{
for(j=2; j*i<SZ; j++)
{
buffer[j*i]='F';//标记其不是素数
}
}
}
}
在buffer中没有被标记为'F'的元素所对应的数组下标都是素数。 这样建立素数表将会是后面很多题目的基础。