zoukankan      html  css  js  c++  java
  • 18.06.30 POJ 百练1745:Divisibility

    描述

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 
    输入

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 
    输出

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    样例输入

    4 7
    17 5 -21 15

    样例输出

    Divisible
    

    来源

    Northeastern Europe 1999

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <memory.h>
     4 #include <algorithm>
     5 #include <stdlib.h>
     6 #include <math.h>
     7 #include <iostream>
     8 #include<queue>
     9 #include <vector>
    10 #include <bitset>
    11 using namespace std;
    12 
    13 int dp[2][105];
    14 int n, k;
    15 int num[10005];
    16 
    17 void solve() {
    18     dp[1][num[1]] = 1;
    19     for (int i = 2; i <= n; i++)
    20     {
    21         for (int j = 0; j < k; j++)dp[i % 2][j] = 0;
    22         for (int j = 0; j < k; j++)
    23             if (dp[(i - 1) % 2][j])
    24             {
    25                 dp[i % 2][(num[i] + j) % k] = 1;
    26                 dp[i % 2][(k+j - num[i]) % k] = 1;
    27             }
    28     }
    29     if (dp[n%2][0])
    30         printf("Divisible
    ");
    31     else
    32         printf("Not divisible
    ");
    33 }
    34 
    35 int main()
    36 {
    37     scanf("%d%d", &n, &k);
    38     for (int i = 1; i <= n; i++)
    39     {
    40         scanf("%d", &num[i]);
    41         num[i] = abs(num[i]) % k;
    42     }
    43     memset(dp, 0, sizeof(dp));
    44     solve();
    45     return 0;
    46 }
    View Code

    想用滚动数组结果忘了每次初始化,debug很久

    注定失败的战争,也要拼尽全力去打赢它; 就算输,也要输得足够漂亮。
  • 相关阅读:
    状态模式
    迭代器模式和组合模式
    模板方法模式
    适配器模式和外观模式
    principle06
    principle05
    命令模式
    单例模式
    工厂模式
    day38(表相关内容)
  • 原文地址:https://www.cnblogs.com/yalphait/p/9247211.html
Copyright © 2011-2022 走看看