zoukankan      html  css  js  c++  java
  • 从视频中提取图片,对图片做人脸检测并截取人脸区域

    环境配置:VS2013+opencv2.4.10+libfacedetect.lib

    libfacedetect.libxi下载: https://github.com/ShiqiYu/libfacedetection/blob/master/example/libfacedetect-example.cpp 

    安装参考博客日志:DAY1 :http://www.cnblogs.com/yamin/p/7115501.html

    参考博客:http://blog.csdn.net/augusdi/article/details/11042329

                     http://www.1024do.com/?p=1296

    首先给出视频处理的函数video_process.hpp

    #include <stdio.h>
    #include <opencv2/opencv.hpp>
    #include "facedetect-dll.h"
    #include<opencv2/highgui/highgui.hpp>  
    
    #pragma comment(lib,"libfacedetect.lib")
    //#pragma comment(lib,"libfacedetect-x64.lib")
    using namespace cv;
    
    #define DETECT_BUFFER_SIZE 0x20000 //facedetect
    #define UNKNOWN_FLOW_THRESH 1e9  //facedetect
    
    #define NUM_FRAME 100  //Video_to_imag中控制截取帧数
    
    //函数声明
    void Video_to_image(char* filename, char* Savepath);
    /*
    函数功能:读取视频的每一帧,并将其按帧数命名保存
    例如:Video_to_image("F:\tp\1.mp4", "F:\image");
    */
    void video_to_image(char* Filename, char* Savepath);
    /*
    函数功能:截取视频前三帧图片并将其保存,帧数间隔默认5
    可用count_tmp和jiangge控制读取帧数和帧数间隔
    用法示例:video_to_image(videopath, "F:\截图\1_")
    保存文件名为\后字符和输入序号的拼接
    */
    int image_cut(char* Filename, char* Savepath);
    /*
    函数功能:对图片进行人脸检测吧,并截取保存人脸及周边区域
    其中用到了libfacedetect.lib
    用法示例:image_cut("F:\截图\1_1.jpg","F:\截图\CUT1_1.jpg" );
    */

    给出视频处理的函数video_process.cpp ,对应上面三个函数

    #include<video_process.h>
    
    void Video_to_image(char* filename, char* Savepath)
    {
        printf("------------- video to image ... ----------------
    ");
    
        CvCapture* capture = cvCaptureFromAVI(filename);//初始化一个视频文件捕捉器 
        cvQueryFrame(capture);//获取视频信息  
        int frameH = (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT);
        int frameW = (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH);
        int fps = (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);
        int numFrames = (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_COUNT);
        printf("video height : %dntvideo width : %dntfps : %dntframe numbers : %dn", frameH, frameW, fps, numFrames);//打印视频信息
        //定义和初始化变量  
        int i = 0;
        IplImage* img = 0;
        char image_name[18];
    
        cvNamedWindow("mainWin", CV_WINDOW_AUTOSIZE);
    
        //读取和显示  
        while (1)
        {
            img = cvQueryFrame(capture); //获取一帧图片  
            cvShowImage("mainWin", img); //将其显示  
            char key = cvWaitKey(20);
            sprintf(image_name, "%s%d%s", Savepath, ++i, ".jpg");//保存的图片名  
            cvSaveImage(image_name, img);
            //cvSaveImage( image_name, img);   //保存一帧图片 
            if (i == 0)
            {
                sprintf(image_name, "%s//%d%s", Savepath, i, ".jpg");
                cvSaveImage(image_name, img);   //保存一帧图片 
            }
            if (i == numFrames) break;
            //if (i == NUM_FRAME) break;
            i++;
        }
        cvReleaseCapture(&capture);
        cvDestroyWindow("mainWin");
        cvWaitKey();
    
    }
    
    void video_to_image(char* Filename, char* Savepath)
    {
        printf("------------- video to image ... ----------------n");
        //初始化一个视频文件捕捉器  
        CvCapture *capture = NULL;
        IplImage *frame = NULL;
        char *AviFileName = Filename;// "F:\tp\1.mp4";//视频的目录
        char *AviSavePath = Savepath;//"F:\截图\";//图片保存的位置
        const int jiange = 5;//间隔5帧保存一次图片
        capture = cvCaptureFromAVI(AviFileName);
        cvNamedWindow("AVI player", 1);
        int count_tmp = 0;//计数总帧数
        int i = 1;
        char tmpfile[100] = { '' };
        while (count_tmp<15)  //每段视频保留3帧
        {
            if (cvGrabFrame(capture))
            {
                if (count_tmp % jiange == 0)
                {
                    frame = cvRetrieveFrame(capture);
                    cvShowImage("AVI player", frame);//显示当前帧
                    sprintf(tmpfile, "%s%d.jpg", AviSavePath, i);//使用帧号作为图片名
                    cvSaveImage(tmpfile, frame);
                    i++;
                }
                if (cvWaitKey(10) >= 0) //延时
                    break;
                ++count_tmp;
            }
            else
            {
                break;
            }
        }
        cvReleaseCapture(&capture);
        cvDestroyWindow("AVI player");
        std::cout << "总帧数" << count_tmp << std::endl;
        cvWaitKey();
        return;
    }
    
    int image_cut(char* Filename, char* Savepath)
    {
        Mat image = imread(Filename);
        if (image.empty())
        {
            fprintf(stderr, "Can not load the image file %s.
    ");
            return -1;
        }
        Mat gray;
        cvtColor(image, gray, CV_BGR2GRAY);
        int * pResults = NULL;
        //pBuffer is used in the detection functions.
        //If you call functions in multiple threads, please create one buffer for each thread!
        unsigned char * pBuffer = (unsigned char *)malloc(DETECT_BUFFER_SIZE);
        if (!pBuffer)
        {
            fprintf(stderr, "Can not alloc buffer.
    ");
            return -1;
        }
    
        int doLandmark = 1;
        ///////////////////////////////////////////
        // reinforced multiview face detection / 68 landmark detection
        // it can detect side view faces, better but slower than facedetect_multiview().
        //////////////////////////////////////////
        //!!! The input image must be a gray one (single-channel)
        //!!! DO NOT RELEASE pResults !!!
        pResults = facedetect_multiview_reinforce(pBuffer, (unsigned char*)(gray.ptr(0)), gray.cols, gray.rows, (int)gray.step,
            1.2f, 3, 48, 0, doLandmark);
    
        printf("%d faces detected.
    ", (pResults ? *pResults : 0));
        int j = 0;
        Mat result_multiview_reinforce = image.clone();
        Mat image_cut = image.clone();
        //print the detection results
    
        for (int i = 0; i < (pResults ? *pResults : 0); i++)
        {
            short * p = ((short*)(pResults + 1)) + 142 * i;
            int x = p[0];
            int y = p[1];
            int w = p[2];
            int h = p[3];
            int neighbors = p[4];
            int angle = p[5];
    
            printf("face_rect=[%d, %d, %d, %d], neighbors=%d, angle=%d
    ", x, y, w, h, neighbors, angle);//(x,y)为检测到人脸左上角像素位置,w为宽,h为高
            rectangle(result_multiview_reinforce, Rect(x, y, w, h), Scalar(0, 255, 0), 0.5);
            int y1 = y - 100;
            int x1 = x - 90;
            int x2 = x + 285;
            int y2 = y + 345;
            if (y1 < 0) //超出边界判断
                y1 = 0;
            if (x1 < 0)
                x1 = 0;
            if (y2 >479)
                y2 = 479;
            if (x2>679)
                x1 = 679;
            image_cut = image_cut(Range(y1, y2), Range(x1, x2));
            //imshow("image_cut", image_cut);
            imwrite(Savepath, image_cut);
    
        }
    
        //release the buffer
        free(pBuffer);
        return 0;
    }
  • 相关阅读:
    linux 安装python3
    phoenix 索引实践
    spark shuffle参数调优
    hbase 面试问题汇总
    sqlserver 自动初始化从节点数据
    hive sql 窗口函数
    数据仓库建模
    Spark DataFrame简介(二)
    list删除时java.util.ConcurrentModificationException
    mybatis中判断等于字符串的条件怎么写
  • 原文地址:https://www.cnblogs.com/yamin/p/7338070.html
Copyright © 2011-2022 走看看