zoukankan      html  css  js  c++  java
  • machine learning (5)---learning rate

    • degugging:make sure gradient descent is working correctly
    1. cost function(J(θ)) of Number of iteration :cost function随着迭代次数增加的变化函数
    2. 运行错误的图象是什么样子的:cost function(J(θ)) of Number of iteration随着迭代次数增加而上升(如以下两种图像的情况),应使用较小的learning rate
    3.  运行正确的图象是什么样子的:cost function(J(θ)) of Number of iteration应该是递减的并且随着迭代次数增加它趋于一条平缓的曲线(即收敛于一个固定的值)

           

    • how to choose learning rate(∂)
      1. 若learning rate太小: 收敛速度会很慢
      2. 若learning rate太大: gradient descent不会收敛,会出现随着迭代次数的增加,cost function反而变大的情况,这时我们要选择较小的learning rate去尝试。
      3. 可供选择的一些learning rate值:  0.3, 0.1, 0.03, 0.01 and so on(3倍)
      4. 在进行gradient drscent时,我们会尝试一些不同的learning rate,然后绘制出不同的ost function(J(θ)) of Number of iteration曲线,然后选择一个使cost function 快速下降的learning rate.
      5. 如何选择最佳的learning rate  

                      尝试这些不同的learning rate找到一个最大的learning rate(若再大则不会收敛)或者比最大稍小一点的learning rate

  • 相关阅读:
    将execl转换成pdf文件
    exBSGS模板
    fhqtreap的学习笔记
    bzoj3196: Tyvj 1730 二逼平衡树
    bzoj2226[Spoj 5971] LCMSum
    bzoj2120: 数颜色
    bzoj3236: [Ahoi2013]作业
    bzoj3208: 花神的秒题计划Ⅰ
    bzoj4143: [AMPPZ2014]The Lawyer
    bzoj1968: [Ahoi2005]COMMON 约数研究
  • 原文地址:https://www.cnblogs.com/yan2015/p/4525937.html
Copyright © 2011-2022 走看看