zoukankan      html  css  js  c++  java
  • 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:协同过滤(collaborative filtering )改进

    协同过滤算法(collaborative filtering ):同时求θ与x的值

    我们有了x的值,来估计θ的值;

    我们有了θ的值,来估计x的值;

    现在我们不想通过迭代的算法来求θ与x的值,我们想同时求x的值,将两个结合起来得到的代价函数如上图所示,在这个代价函数中,如果将x看作常数,则得到第一个代价函数;如果将θ看作常数,则得到第二个代价函数。

    这里面x与θ都是n维的,而不是n+1维的,因为我们的x0=1,为截距项,不用通过计算就可以得到。

    协同过滤算法

    首先初始化x与θ的值,然后使用梯度下降法求x与θ的值,最后根据求出的x与θ的值来预测某个用户对某部电影的评分。这里的x与θ都是n维的,不是n+1维的。

    总结

    协同过滤算法可以学习几乎所有电影的特征(x),和所有用户的参数(θ),然后可以对不同用户对他们尚未打分的电影进行预测(某个用户的θ与某部电影的x的内积)。

  • 相关阅读:
    Java Singleton 单例模式
    android 让真机显示 DeBug Log调试信息
    android 图片处理经验分享
    android GridView 的使用 实现多项选择
    Spark/Storm/Flink
    Https
    Netty
    Netty
    java 线程状态相关测试
    Socket buffer 调优相关
  • 原文地址:https://www.cnblogs.com/yan2015/p/7545172.html
Copyright © 2011-2022 走看看