zoukankan      html  css  js  c++  java
  • 空间中任意一点到超平面距离的公式推导

    空间中任意一点$x_0$到超平面S的距离公式:

    $ frac {1} { ||w||} |w ullet x_0 + b|$

    推导过程:


    取点空间中一点$x_0$,,超平面S:$w ullet x + b = 0$,其中$x_0$,w,x均为N维向量;

        设点$x_0$到平面S的距离为d,点$x_0$在平面S上的投影点为$x_1$,则$x_1$满足$w ullet x_1 + b = 0$;

        因为向量$vec{x_0x_1}$平行于S平面的法向量w,故有

           $|w ullet vec{x_0x_1}| = |w| |vec{x_0x_1}| = sqrt {(w^1)^2 + ... + (w^N)^2} d = ||w||d$,其中$||w||$为向量w的$L_2$范数;

        又因     $w ullet sqrt{x_0x_1} = w^1(x_0^1 - x_1^1) + w^2(x_0^2 - x_1^2) + ... +w^N(x_0^N-x_1^N)$

                        $= w^1x_0^1 + w^2x_0^2 + ... + w^Nx_0^N - (w^1x_1^1 + w^2x_1^2 + ... + w^Nx_1^N)$

                        $= w^1x_0^1 + w^2x_0^2 + ... +w^Nx_0^2 - (-b)$

                        $= w ullet x_0 + b$

        故 $|w ullet vec{x_0x_1}|  = |w ullet x_0 + b| = ||w||d$

       得$ d = frac {1}{||w||} |w ullet x_0 + b|$

  • 相关阅读:
    第二章Maven安装与配置
    第一章 Maven简介
    什么是Maven?
    jbpm与OA项目-oa概念
    Hadoop学习常用的Linux命令
    包名命名规则
    判断网络类型
    webview的设置
    AlertDialog的实现
    SharedPreferences保存用户偏好参数
  • 原文地址:https://www.cnblogs.com/yanganling/p/8007050.html
Copyright © 2011-2022 走看看