前言
我只想说,我都氪金考试了,能不能不掉分。
每天一遍: YCC 是 SB。
还有,孙土蛋同学的代码是真的上头。
T1
40pts
对于每个(leq p - 1) 的数,在乘以每个 (z(leq q))的情况下,得到的数当做节点,以花费的代价作为边权,建边跑弗洛伊德算法。
/*
Date:2021.10.4
Source:牛客 模拟赛
knowledge:
*/
#include <iostream>
#include <cstdio>
#include <map>
#include <cstring>
#define orz cout << "AK IOI" << "
"
#define Min(x, y) ((x) < (y) ? (x) : (y))
#define Max(x, y) ((x) > (y) ? (x) : (y))
#define int long long
using namespace std;
const int mod = 998244353;
const int maxn = 2010;
inline int read()
{
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
return x * f;
}
inline void print(int X)
{
if(X < 0) X = ~(X - 1), putchar('-');
if(X > 9) print(X / 10);
putchar(X % 10 ^ '0');
}
int dis[maxn][maxn], p, t, ans;
int Abs(int a) {return a > 0 ? a : -a;}
void floyd()
{
for(int i = 0; i < p; i++) dis[i][i] = 0;
for(int k = 0; k < p; k++)
for(int i = 0; i < p; i++)
for(int j = 0; j < p; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
int pow(int a, int b)
{
int ret = 1;
while(b)
{
if(b & 1) ret = ret * a % mod;
b >>= 1;
a = (a * a) % mod;
}
return ret % mod;
}
signed main()
{
p = read(), t = read();
memset(dis, 0x3f, sizeof dis);
for(int i = 1; i < p; i++)
{
for(int j = 1; j < p; j++)
{
int v = i * j % p;
dis[i][v] = min(dis[i][v], Abs(i - j));
}
}
floyd();
for(int i = 1; i < p; i++)
for(int j = 1; j < p; j++)
ans = (ans + dis[i][j] * pow(t, (i - 1) * (p - 1) + j - 1) % mod) % mod;
print(ans);
return 0;
}
由于评测机跑的太快于是就有了70分的好成绩。
100 pts
对于每一个 (i) 为起点, 跑 $ P - 1$ 次 dij,直接跑的复杂度是 (O(p ^3))。
考虑如何优化,通过打表可以发现 (ans(i, j)) 都不会大于 (17),那么用点 (u) 去更新的时候只需要转移到
([max(1,u − lim),min(P−1,u + lim)]) 范围内的点,这样边数就被优化到了(O(P lim))。
把 memset
改成了 for
循环后,一份 TLE
的代码就 AC
了。
/*
Date:2021.10.4
Source:牛客 模拟赛
knowledge:
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#define orz cout << "AK IOI" << "
"
#define int long long
#define Min(x, y) ((x) < (y) ? (x) : (y))
#define Max(x, y) ((x) > (y) ? (x) : (y))
#define Abs(a) ((a) > 0 ? (a) : (-a))
using namespace std;
const int mod = 998244353;
const int maxn = 4e6 + 10;
inline int read()
{
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
return x * f;
}
inline void print(int X)
{
if(X < 0) X = ~(X - 1), putchar('-');
if(X > 9) print(X / 10);
putchar(X % 10 ^ '0');
}
int p, t, ans, power[maxn], dis[maxn];
bool vis[maxn];
struct node{
int u, v, w, nxt;
}e[maxn << 1];
int js, head[maxn];
void add(int u, int v, int w)
{
e[++js] = (node){u, v, w, head[u]};
head[u] = js;
}
void init()
{
power[0] = 1;
for(int i = 1; i <= p * p; i++) power[i] = power[i - 1] * t % mod;
}
struct edge{
int now, w;
bool operator < (const edge &x) const
{
return w > x.w;
}
};
void dij(int s)
{
priority_queue<edge> q;
for(int i = 0; i <= p; i++) dis[i] = 0x3f3f3f3f, vis[i] = 0;
dis[s] = 0;
q.push((edge){s, 0});
while(!q.empty())
{
int u = q.top().now;
q.pop();
if(vis[u]) continue;
vis[u] = 1;
for(int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].v;
if(vis[v]) continue;
if(dis[v] > dis[u] + e[i].w)
{
dis[v] = dis[u] + e[i].w;
q.push((edge){v, dis[v]});
}
}
}
}
signed main()
{
p = read(), t = read();
init();
for(int i = 1; i <= p - 1; i++)
{
int l = Max(1ll, i - 18), r = Min(p - 1, i + 18);//优化
for(int j = l; j <= r; j++)
{
int v = i * j % p;
add(i, v, abs(i - j));
}
}
for(int i = 1; i <= p - 1; i++)
{
dij(i);
for(int j = 1; j <= p - 1; j++)
ans = (ans + dis[j] * power[(i - 1) * (p - 1) + j - 1] % mod) % mod;
}
printf("%lld
", ans);
return 0;
}
T2
10 pts
枚举全排列,计算代价,对比代价,得出答案,时间复杂度 (O(n!))。
暴力写挂了,我是真nb。
/*
Date:
Source:
knowledge:
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#define orz cout << "AK IOI" << "
"
#define Min(x, y) ((x) < (y) ? (x) : (y))
#define Max(x, y) ((x) > (y) ? (x) : (y))
using namespace std;
const int maxn = 2010;
const int mod = 998244353;
inline int read()
{
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
return x * f;
}
inline void print(int X)
{
if(X < 0) X = ~(X - 1), putchar('-');
if(X > 9) print(X / 10);
putchar(X % 10 ^ '0');
}
int n, minn = 0x3f3f3f3f, a[maxn], b[maxn], id[maxn], map[8000000];
int getl(int x)
{
for(int i = x - 1; i >= 1; i--) if(a[i] == 0) return i;
return 0;
}
int getr(int x)
{
for(int i = x + 1; i <= n + 1; i++) if(a[i] == 0) return i;
return n + 1;
}
int main()
{
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n = read();
for(int i = 1; i <= n; i++) a[i] = read(), b[i] = a[i], id[i] = i;
while(next_permutation(id + 1, id + n + 1))
{
for(int i = 1; i <= n; i++) a[i] = b[i];
int Ans = 0;
for(int x = 1; x <= n; x++)
{
a[id[x]] = 0;
int flag = -0x3f3f3f3f;
int l = getl(x);
for(int j = l; j < x; j++) flag = Max(flag, a[j]);
Ans += flag;
flag = -0x3f3f3f3f;
int r = getr(x);
for(int j = x + 1; j <= r; j++) flag = Max(flag, a[j]);
Ans += flag;
}
map[Ans]++;
minn = Min(minn, Ans);
}
printf("%d", minn);
//fclose(stdin);
//fclose(stdout);
return 0;
}
20pts
状态压缩,计算代价,对比代价,得出答案。
50pts
在对第 (x) 个进行操作后,(x) 两边的区间就可以独立了,这两段不会对另一段产生影响,可以进行区间 dp。
设 (f_{l, r}) 为对 ([l, r]) 区间操作产生的最小贡献, (g_{l, r}) 为最小代价的操作序列数量,枚举 (m), 若 (f_{l, r}) 由 (f_{l, m} f_{m + 1, r}) 转移而来,则(g_{l,r}+=g_{l,m} imes g_{m+1,r} imes C(r-l,m-l)),时间复杂度 (O(n^3))。
70pts
实际上每次先操作区间最大值是最优的,因此没有必要对区间的所有数都进行枚举,而只枚举区间最大值,时间复杂度 (O(n^3)) 。
100pts
对于一段区间 ([l,r]),如果存在(a_i=a_{i+1}=maxlimits_{i=l}^r(a_i)(iin[l,r)))。
此时 (i,i+1) 谁先选择没有关系,因此有(g_{l,r}=g_{l,i} imes g_{i+1,r} imes C(r-l+1,i-l+1))。
因此当碰到两个最大值连续出现时,直接将整个区间划分为两段,最大值不连续则仍然枚举所有最大值。
从而时间复杂度降至(O((frac{n}{2})^3))。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define int long long
using namespace std;
const int MAXN = 1e3+50;
const int INF = 1e18+7;
const int mod = 998244353;
int n;
int a[MAXN], pos[MAXN][MAXN], fac[MAXN], inv[MAXN], nxt[MAXN], pre[MAXN];
int f[MAXN][MAXN], g[MAXN][MAXN], Max[MAXN][MAXN];
bool vis[MAXN][MAXN];
int read()
{
int s = 0, f = 0; char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
return f ? -s : s;
}
void Init()
{
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for(int i = 2; i <= 1000; ++i)
{
fac[i] = fac[i - 1] * i % mod;
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
for(int i = 2; i <= 1000; ++i) inv[i] = inv[i] * inv[i - 1] % mod;
}
int C(int n, int m)
{
if(n < m) return 0;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
void dfs(int l, int r)
{
if(l >= r) { f[l][r] = 0, g[l][r] = 1; return ;}
if(vis[l][r]) return ;
vis[l][r] = true;
f[l][r] = INF, g[l][r] = 0;
for(int i = pos[l][r]; i <= r; i = nxt[i])
{
dfs(l, i - 1), dfs(i + 1, r);
g[l][r] = (g[l][r] + g[l][i - 1] * g[i + 1][r] % mod * C(r - l, i - l) % mod) % mod;
}
}
signed main()
{
Init();
n = read();
for(int i = 1; i <= n; ++i) a[i] = read();
for(int i = 1; i <= n + 1; ++i) pre[i] = n + 1;
for(int i = n; i >= 1; --i)
{
nxt[i] = pre[a[i]];
pre[a[i]] = i;
}
for(int i = 1; i <= n; ++i)
{
pos[i][i] = i;
for(int j = i + 1; j <= n; ++j)
{
if(a[pos[i][j - 1]] < a[j]) pos[i][j] = j;
else pos[i][j] = pos[i][j - 1];
}
}
dfs(1, n);
printf("%lld
", g[1][n]);
return 0;
}
T3
20pts
按题意模拟一下。
100pts
感觉算是一个数学题了吧,真的懒得写了。
粘一下隔壁大佬的代码吧
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define int long long
#define orz cout<<"AK IOI"<<endl
using namespace std;
const int MAXN = 1e7+5;
const int INF = 1e9+7;
const int mod = 998244353;
const int Inv2 = 499122177;
const int Max = 1e7;
char s[MAXN];
int c;
int f[MAXN];
int read(){
int s = 0, f = 0;
char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
return f ? -s : s;
}
int Calc(int x, int y, int n) {
return (x * n % mod + y * n % mod * (n + mod - 1) % mod * Inv2 % mod) % mod;
}
signed main()
{
f[0] = 1;
for(int i = 1; i <= Max; ++i) f[i] = (f[i - 1] << 1) % mod;
int T = read();
while(T--) {
cin >> s + 1; c = read();
int len = strlen(s + 1);
--c;
if(!c) {
int ans = 0;
for(int i = 1; i <= len; ++i) ans = ((ans << 1) + s[i] - '0') % mod;
ans = ans * (ans + 1) % mod * Inv2 % mod;
printf("%lld
", ans);
continue;
}
if(c & 1) {
puts("0");
continue;
}
int p = 0;
while(c % 2 == 0) ++p, c /= 2;
int ans = 0;
for(int t = 0; t < len; ++t) {
int g = max(0ll, t + 1 - p);
if(t < len - 1) {
ans = (ans + f[g] * Calc(f[t], f[g], f[t + 1 - g] - f[t - g] + mod) % mod) % mod;
} else {
int tot = 0;
for(int i = 1; i <= len - g; ++i) tot = ((tot << 1) + s[i] - '0') % mod;
tot = (tot + 1 - f[t - g] + mod) % mod;
ans = (ans + f[g] * Calc(f[t], f[g], tot)) % mod;
int lst = (f[t] + (tot + mod - 1) * f[g] % mod) % mod;
int l = 0;
for(int i = 1; i <= len; ++i) l = ((l << 1) + s[i] - '0') % mod;
int r = (lst + f[g] + mod - 1) % mod;
ans = (ans - (r - l + mod) % mod * lst % mod + mod) % mod;
}
}
printf("%lld
", ans);
}
return 0;
}
T4
20pts
按题意模拟,但是数据构造时出了点问题,就可以有95分的好成绩,但是我的只有 72.5 分。
/*
Date:
Source:
knowledge:
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#define orz cout << "AK IOI" << "
"
#define Min(x, y) ((x) < (y) ? (x) : (y))
#define Max(x, y) ((x) > (y) ? (x) : (y))
using namespace std;
const int maxn = 1510;
inline int read()
{
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
return x * f;
}
inline void print(int X)
{
if(X < 0) X = ~(X - 1), putchar('-');
if(X > 9) print(X / 10);
putchar(X % 10 ^ '0');
}
int n, m, k, ans, map[maxn][maxn], vis[110], js;
void work(int x, int y, int kk)
{
js = 0;
memset(vis, 0, sizeof vis);
for(int i = x; i <= x + kk - 1; i++)
for(int j = y; j <= y + kk - 1; j++)
{
if(!vis[map[i][j]]) {vis[map[i][j]] = 1; js++;}
if(js > k) break;
}
if(js == k) ans++;
}
int main()
{
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n = read(), m = read(), k = read();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) map[i][j] = read();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
for(int x = 1; x <= min(n - i + 1, m - j + 1); x++)
{
work(i, j, x);
if(js > k) break;
}
print(ans);
//fclose(stdin);
//fclose(stdout);
return 0;
}
40pts
在暴力枚举的基础上,对数字进行压缩, 把 (a_i) 压缩成 (2 ^ {a_i}), 每次边长扩展 1 就或上一个数。时间复杂度 (O(n ^3))。
100pts
在边长扩展的过程中,不同数量的数只会增加不会减少,具有单调性,可以二分找到不同数量 (< k) 的最大边长 (x) 和不同数量 $ leq k$ 的最大边长 (y), (y - x) 即为固定一个左上角符合条件的正方形的数量。这样需要处理 (O(n^2log n)) 个查询,每个查询一个正方形内不同颜色的数量,由于是正方形,故可以采用二维st 表来做。
/*
Date:
Source:
konwledge:
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<bitset>
#define LL long long
#define orz cout << "AK IOI" << "
"
#define Min(x, y) ((x) < (y) ? (x) : (y))
#define Max(x, y) ((x) > (y) ? (x) : (y))
using namespace std;
const int maxn = 1505;
const int INF = 1e9+7;
const int mod = 1e9+7;
int n, m, K;
int Log[maxn];
bitset<100> f[11][maxn][maxn];
inline int read()
{
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
return x * f;
}
inline void print(int X)
{
if(X < 0) X = ~(X - 1), putchar('-');
if(X > 9) print(X / 10);
putchar(X % 10 ^ '0');
}
void ST()
{
for(int k = 1, M = max(n, m); (1 << k) <= M; ++k)
{
for(int i = 1; i + (1 << k) - 1 <= n; ++i)
{
for(int j = 1; j + (1 << k) - 1 <= m; ++j)
{
f[k][i][j] = f[k - 1][i][j] | f[k - 1][i + (1 << k - 1)][j] |
f[k - 1][i][j + (1 << k - 1)] | f[k - 1][i + (1 << k - 1)][j + (1 << k - 1)];
}
}
}
}
int Query(int sx, int sy, int ex, int ey)
{
int k = Log[ex - sx + 1];
return (f[k][sx][sy] | f[k][ex - (1 << k) + 1][sy] |
f[k][sx][ey - (1 << k) + 1] | f[k][ex - (1 << k) + 1][ey - (1 << k) + 1]).count();
}
LL Calc(int Mid)
{
if(!Mid) return 0;
LL ans = 0;
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= m; ++j)
{
int l = 1, r = min(n - i + 1, m - j + 1), res = 0;
while(l <= r)
{
int mid = (l + r) >> 1;
if(Query(i, j, i + mid - 1, j + mid - 1) <= Mid)
res = mid, l = mid + 1;
else r = mid - 1;
}
ans += res;
}
}
return ans;
}
signed main()
{
for(int i = 2; i <= 1500; ++i) Log[i] = Log[i >> 1] + 1;
n = read(), m = read(), K = read();
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
f[0][i][j][read() - 1] = true;
ST();
printf("%lld
", Calc(K) - Calc(K - 1));
return 0;
}
总结
- 交代码前一定再次测样例,避免 sb 错误。
- 对于 操作可以进行无数次 思考建图操作建图。
- 可以通过打表寻找特殊的性质。