zoukankan      html  css  js  c++  java
  • 不同框架下验证精度

    0.两个txt对比精度

    import numpy as np
    name = "fc1x_a"
    path_pytorch_txt = "/data_1/everyday/1123/img_acc/libtorch_img.txt"
    path_caffe_txt = "/data_1/everyday/1123/img_acc/pytorch_img.txt"
    
    pytorch_tensor = np.loadtxt(path_pytorch_txt)
    caffe_tensor = np.loadtxt(path_caffe_txt)
    
    diff = pytorch_tensor - caffe_tensor
    
    max_ = np.max(np.abs(diff))
    print("max=", max_)
    
    print("none zero=",np.count_nonzero(diff))
    
    print(np.argmax(np.abs(diff)))
    

    1.c++与python的opencv 图像生成txt验证精度

    c++

            cv::Mat img = cv::imread(file);
            int rowNumber = img.rows;  //行数
            int colNumber = img.cols*img.channels();  //列数 x 通道数=每一行元素的个数
            std::ofstream out_file("/data_1/everyday/1123/img_acc/libtorch_img.txt");
            //双重循环,遍历所有的像素值
            for (int i = 0; i < rowNumber; i++)  //行循环
            {
                uchar *data = img.ptr<uchar>(i);  //获取第i行的首地址
                for (int j = 0; j < colNumber; j++)   //列循环
                {
                    // ---------【开始处理每个像素】-------------
                    int pix = int(data[j]);
                    out_file << pix << std::endl;
                }
            }
            out_file.close();
    

    这里有个问题需要注意, uchar *data = img.ptr(i); //获取第i行的首地址

    这句话当你图像

    m_stand.convertTo(m_stand, CV_32FC3);

    转为float的时候需要改类型
    Python

            img = cv2.imread(path_img)
            tmp_1 = img.reshape(-1)
            np.savetxt("/data_1/everyday/1123/img_acc/pytorch_img.txt",tmp_1)
    

    2.pytorch tensor与libtorch tensor生成txt验证精度

    libtorch

    bool save_tensor_txt(torch::Tensor tensor_in_,string path_txt)
    {
    #include "fstream"
        ofstream outfile(path_txt);
        torch::Tensor tensor_in = tensor_in_.clone();
        tensor_in = tensor_in.view({-1,1});
        tensor_in = tensor_in.to(torch::kCPU);
    
        auto result_data = tensor_in.accessor<float, 2>();
    
        for(int i=0;i<result_data.size(0);i++)
        {
            float val = result_data[i][0];
    //        std::cout<<"val="<<val<<std::endl;
            outfile<<val<<std::endl;
    
        }
    
        return true;
    }
    

    pytorch

    def save_tensor(tensor_in,path_save):
        tensor_in = tensor_in.contiguous().view(-1,1)
        np_tensor = tensor_in.cpu().numpy()
        # np_tensor = np_tensor.view()
        np.savetxt(path_save,np_tensor,fmt='%.12e')
    
    好记性不如烂键盘---点滴、积累、进步!
  • 相关阅读:
    【BZOJ1010】【HNOI2008】玩具装箱
    【BZOJ1009】【HNOI2008】GT考试
    【BZOJ1008】【HNOI2008】越狱
    【BZOJ1007】【HNOI2008】水平可见直线
    【BZOJ1006】【HNOI2008】神奇的国度
    (考研)生产者消费者问题(赋代码)
    (考研)(精华)二叉树的知识结构图以及各种特殊的二叉树
    二叉树新的一种新建思路和遍历思路
    (简单但不容易写全对)逆置数组
    (经典)二叉树的层次遍历和快速排序
  • 原文地址:https://www.cnblogs.com/yanghailin/p/15593614.html
Copyright © 2011-2022 走看看