zoukankan      html  css  js  c++  java
  • hadoop spark合并小文件

     

    一.输入文件类型设置为 CombineTextInputFormat

    hadoop

    job.setInputFormatClass(CombineTextInputFormat.class)

    spark

     val data = sc.newAPIHadoopFile(args(1),
          classOf[CombineTextInputFormat],
          classOf[LongWritable],
          classOf[Text], hadoopConf)
          .map { //TODO }

    (hadoop2.7及其以上版本有这个类,虽然2.6也可能用这个类,但不兼容,会出一些bug导致任务失败;或者直接就报错找不到类)

    二.再配置以下参数:

    (如果设置了CombineTextInputFormat而不配置分片大小的参数,所有输入会合并为一个文件,也就是说,不管你数据多大,只有一个Map,血泪的教训啊!)

    1.运行时加参数

    -D mapreduce.input.fileinputformat.split.minsize=134217728
    -D mapreduce.input.fileinputformat.split.maxsize=512000000
    -D mapred.linerecordreader.maxlength=32768 

    例如: hadoop jar xx.jar -D mapreduce.input.fileinputformat.split.minsize=134217728  -D mapreduce.input.fileinputformat.split.maxsize=512000000 <input> <output> 

    运行时添加参数这种方法需要在Diver 的main方法第一行添加如下代码(很重要):

    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

    不然直接拿会把运行参数-D当成 args[0],用GenericOptionsParser解析后otherArgs[0]参数是才是<input>;

    不习惯运行时添加参数可以直接在Diver类中写死,代码中的设置会覆盖运行时添加的参数

    2.代码中设置参数

     var hadoopConf = new Configuration()
     hadoopConf.set("mapreduce.input.fileinputformat.split.maxsize", "512000000")
     hadoopConf.set("mapreduce.input.fileinputformat.split.minsize", "268435456")
     hadoopConf.set("mapreduce.input.fileinputformat.split.minsize.per.node", "134217728")   //下面这两参数可以不设置,详情看文章末尾
     hadoopConf.set("mapreduce.input.fileinputformat.split.minsize.per.rack", "268435456")
    

     maxsize和minsize是设置分片上下限的。

    (这里还个参数,一般用不上  -D mapred.linerecordreader.maxlength=32768)设置每行最大长度。  

    MapReduce中获取job实例的时候把hadoopConf传入

    Job job = Job.getInstance(hadoopConf,"MyJob");

    Spark

    //还是上面的spark示例代码 创建RDD的时候传入
    val data = sc.newAPIHadoopFile(args(1), classOf[CombineTextInputFormat], classOf[LongWritable], classOf[Text], hadoopConf) .map { //TODO }

     完毕,打包运行代码吧!

    other:

    hadoopconf 的其他两个参数可以不设置,了解一下

    • 如果指定了mapreduce.input.fileinputformat.split.maxsize,那么在同一个节点上的Blocks合并,一个超过maxsize就生成新分片。
    • mapreduce.input.fileinputformat.split.minsize.per.node,那么会把1.中处理剩余的Block,进行合并,如果超过minsize,那么全部作为一个分片。否则这些Block与同一机架 Rack上的块进行合并。
    • 每个节点上如上同样的方式处理,然后针对整个Rack的所有Block,按照1.方式处理。剩余部分,如果指定了mapreduce.input.fileinputformat.split.minsize.per.rack,并且超过minsize.per.rack,则全部作为一个分片,否则这些Block保留,等待与所有机架上的剩余Block进行汇总处理。


    每个机架上都按照1,2,3方式处理,汇总所有处理剩下的部分,再按照1的逻辑处理。再剩余的,作为一个分片。

  • 相关阅读:
    【转】基于keras 的神经网络股价预测模型
    [转]Python中yield的解释
    【转】类似py2exe软件真的能保护python源码吗
    [转]You Could Become an AI Master Before You Know It. Here’s How.
    【转】Linux安装HDF5及遇到的问题总结
    [转]TA-Lib 安装
    【转】Python metaclass
    【转】解决ubuntu13.10下,无法双击运行脚本文件
    ubuntu16 配置git
    ubuntu16 安装matplotlib
  • 原文地址:https://www.cnblogs.com/yanghaolie/p/6732159.html
Copyright © 2011-2022 走看看