zoukankan      html  css  js  c++  java
  • 闵可夫斯基(Minkowski)不等式

    对于任意的 $n$ 维向量 $a = left { x_{1},x_{2},...,x_{n} ight }$,$b = left { y_{1},y_{2},...,y_{n} ight }$,$p geq 1$,有

    $$left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{p} ight )^{frac{1}{p}} leq left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}} + left ( sum_{i=1}^{n}|y_{i}|^{p} ight )^{frac{1}{p}}$$

    证明:

    $$sum_{i=1}^{n}|x_{i} + y_{i}|^{p} = sum_{i=1}^{n}|x_{i} + y_{i}|cdot |x_{i} + y_{i}|^{p - 1} leq sum_{i=1}^{n}(|x_{i}| + |y_{i}|)cdot |x_{i} + y_{i}|^{p - 1} \
    = sum_{i=1}^{n}|x_{i}| cdot |x_{i} + y_{i}|^{p - 1} + sum_{i=1}^{n}|y_{i}| cdot |x_{i} + y_{i}|^{p - 1} $$

       必然存在一个 $q geq 1$,使得 $frac{1}{p} + frac{1}{q} = 1$,则根据 $Holder$ 不等式有

    $$sum_{i=1}^{n}|x_{i}| cdot |x_{i} + y_{i}|^{p - 1} + sum_{i=1}^{n}|y_{i}| cdot |x_{i} + y_{i}|^{p - 1}  leq left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}} cdot left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{q(p-1)} ight )^{frac{1}{q}} + left ( sum_{i=1}^{n}|y_{i}|^{p} ight )^{frac{1}{p}} cdot left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{q(p-1)} ight )^{frac{1}{q}} \
    = left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}} cdot left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{p} ight )^{frac{1}{q}} + left ( sum_{i=1}^{n}|y_{i}|^{p} ight )^{frac{1}{p}} cdot left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{p} ight )^{frac{1}{q}} \
    = left { left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}} + left ( sum_{i=1}^{n}|y_{i}|^{p} ight )^{frac{1}{p}} ight } cdot left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{p} ight )^{frac{1}{q}}$$

       于是有

    $$sum_{i=1}^{n}|x_{i} + y_{i}|^{p}
     leq  left { left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}} + left ( sum_{i=1}^{n}|y_{i}|^{p} ight )^{frac{1}{p}} ight } cdot left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{p} ight )^{frac{1}{q}}$$

       两边同除以最后一项,便可得

    $$left ( sum_{i=1}^{n}|x_{i} + y_{i}|^{p} ight )^{frac{1}{p}} leq left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}} + left ( sum_{i=1}^{n}|y_{i}|^{p} ight )^{frac{1}{p}}$$

    证毕

  • 相关阅读:
    SRM 582 Div II Level Three: ColorTheCells, Brute Force 算法
    SRM 583 Div II Level One:SwappingDigits
    SRM 583 Div Level Two:IDNumberVerification
    [置顶] gis海量资源网盘提供VIP账号无广告高速下载 (更新更多资源)
    为什么必须是final的呢?
    SRM 583 Div II Level Three:GameOnABoard,Dijkstra最短路径算法
    【学习opencv第七篇】图像的阈值化
    quartz 2.1学习(一)
    [置顶] C++之TinyXML的使用介绍
    写个小程序来比对两个目录下的不同文件
  • 原文地址:https://www.cnblogs.com/yanghh/p/13343764.html
Copyright © 2011-2022 走看看