zoukankan      html  css  js  c++  java
  • 图像梯度计算

    图像其实就是二元函数 $f(x,y)$,只不过是离散的,图像梯度就是这个二元离散函数的偏导。计算图像梯度是一个一个像素点求的。

    连续二元函数的偏导数为

    $$frac{partial f(x,y)}{partial x} = lim_{Delta x ightarrow 0}frac{f(x + Delta x, y) - f(x, y)}{Delta x} \
    frac{partial f(x,y)}{partial y} = lim_{Delta y ightarrow 0}frac{f(x, y + Delta y) - f(x, y)}{Delta y}$$

    但是图像是离散函数,$Delta x$ 没有办法趋于 $0$,最小只能是间隔 $1$,因此使用有限差分来近似计算梯度。因此,图像偏导变成了如下形式:

    $$frac{partial f(x,y)}{partial x} = f(x + 1, y) - f(x, y) \
    frac{partial f(x,y)}{partial y} = f(x, y + 1) - f(x, y)$$

    $x,y$ 表示某个像素的坐标,除了上面这个前向差商外,还可以采用后向差商,中心差商来计算梯度。比如采用中心差商:

    $$frac{partial f(x,y)}{partial x} = frac{f(x + 1, y) - f(x - 1, y)}{2} \
    frac{partial f(x,y)}{partial y} = frac{f(x, y + 1) - f(x, y - 1)}{2}$$

        

    写成一维卷积的形式等于与 $[-1, 0, 1]$ 这样一个滤波核作卷积。

    对于离散的图像来说,一阶微分的数学表达相当于两个相邻像素的差值,根据选择的梯度算子不同,效果可能有所不同,但是基本原理不会变化。

    比如 sobel 算子也可以计算梯度,本质也是通过差分计算,但是用到了前后向序列的信息,同时为每个元素附加权重。

            

           

  • 相关阅读:
    Ant学习实例
    ant 使用指南
    tomcat配置管理用户名密码
    纯JAVA驱动:sqlserver版本不同,驱动与连接也有所区别
    STRUTS2获得session和request
    SSH整合,"sessionFactory " or "hibernateTemplate " is required异常
    tmp
    让Tomcat支持中文文件名
    postgreSQL初步使用总结
    postgreSQL9.1忘记postgres用户密码怎么办
  • 原文地址:https://www.cnblogs.com/yanghh/p/14163277.html
Copyright © 2011-2022 走看看