zoukankan      html  css  js  c++  java
  • 寒假学习进度11:tensorflow2.0 缓解过拟合

    欠拟合:对现有数据学习不够彻底

    过拟合:模型对当前数据拟合的太好,而对从未见过的新数据无法做出正确判断,模型缺乏泛化力。

    缓解欠拟合:增加输入特征项,增加网络参数,减少正则化参数

    缓解欠拟合:数据清洗,增大训练集,采用正则化,增大正则化参数

    # 导入所需模块
    import tensorflow as tf
    from matplotlib import pyplot as plt
    import numpy as np
    import pandas as pd
    
    # 读入数据/标签 生成x_train y_train
    df = pd.read_csv('dot.csv')
    x_data = np.array(df[['x1', 'x2']])
    y_data = np.array(df['y_c'])
    
    x_train = x_data
    y_train = y_data.reshape(-1, 1)
    
    Y_c = [['red' if y else 'blue'] for y in y_train]
    
    # 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错
    x_train = tf.cast(x_train, tf.float32)
    y_train = tf.cast(y_train, tf.float32)
    
    # from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应
    train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
    
    # 生成神经网络的参数,输入层为4个神经元,隐藏层为32个神经元,2层隐藏层,输出层为3个神经元
    # 用tf.Variable()保证参数可训练
    w1 = tf.Variable(tf.random.normal([2, 11]), dtype=tf.float32)
    b1 = tf.Variable(tf.constant(0.01, shape=[11]))
    
    w2 = tf.Variable(tf.random.normal([11, 1]), dtype=tf.float32)
    b2 = tf.Variable(tf.constant(0.01, shape=[1]))
    
    lr = 0.01  # 学习率为
    epoch = 400  # 循环轮数
    
    # 训练部分
    for epoch in range(epoch):
        for step, (x_train, y_train) in enumerate(train_db):
            with tf.GradientTape() as tape:  # 记录梯度信息
    
                h1 = tf.matmul(x_train, w1) + b1  # 记录神经网络乘加运算
                h1 = tf.nn.relu(h1)
                y = tf.matmul(h1, w2) + b2
    
                # 采用均方误差损失函数mse = mean(sum(y-out)^2)
                loss_mse = tf.reduce_mean(tf.square(y_train - y))
                # 添加l2正则化
                loss_regularization = []
                # tf.nn.l2_loss(w)=sum(w ** 2) / 2
                loss_regularization.append(tf.nn.l2_loss(w1))
                loss_regularization.append(tf.nn.l2_loss(w2))
                # 求和
                # 例:x=tf.constant(([1,1,1],[1,1,1]))
                #   tf.reduce_sum(x)
                # >>>6
                # loss_regularization = tf.reduce_sum(tf.stack(loss_regularization))
                loss_regularization = tf.reduce_sum(loss_regularization)
                loss = loss_mse + 0.03 * loss_regularization #REGULARIZER = 0.03
    
            # 计算loss对各个参数的梯度
            variables = [w1, b1, w2, b2]
            grads = tape.gradient(loss, variables)
    
            # 实现梯度更新
            # w1 = w1 - lr * w1_grad
            w1.assign_sub(lr * grads[0])
            b1.assign_sub(lr * grads[1])
            w2.assign_sub(lr * grads[2])
            b2.assign_sub(lr * grads[3])
    
        # 每200个epoch,打印loss信息
        if epoch % 20 == 0:
            print('epoch:', epoch, 'loss:', float(loss))
    
    # 预测部分
    print("*******predict*******")
    # xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成间隔数值点
    xx, yy = np.mgrid[-3:3:.1, -3:3:.1]
    # 将xx, yy拉直,并合并配对为二维张量,生成二维坐标点
    grid = np.c_[xx.ravel(), yy.ravel()]
    grid = tf.cast(grid, tf.float32)
    # 将网格坐标点喂入神经网络,进行预测,probs为输出
    probs = []
    for x_predict in grid:
        # 使用训练好的参数进行预测
        h1 = tf.matmul([x_predict], w1) + b1
        h1 = tf.nn.relu(h1)
        y = tf.matmul(h1, w2) + b2  # y为预测结果
        probs.append(y)
    
    # 取第0列给x1,取第1列给x2
    x1 = x_data[:, 0]
    x2 = x_data[:, 1]
    # probs的shape调整成xx的样子
    probs = np.array(probs).reshape(xx.shape)
    plt.scatter(x1, x2, color=np.squeeze(Y_c))
    # 把坐标xx yy和对应的值probs放入contour<[‘kɑntʊr]>函数,给probs值为0.5的所有点上色  plt点show后 显示的是红蓝点的分界线
    plt.contour(xx, yy, probs, levels=[.5])
    plt.show()
    
    # 读入红蓝点,画出分割线,包含正则化
    # 不清楚的数据,建议print出来查看 
    # 导入所需模块
    import tensorflow as tf
    from matplotlib import pyplot as plt
    import numpy as np
    import pandas as pd
    
    # 读入数据/标签 生成x_train y_train
    df = pd.read_csv('dot.csv')
    x_data = np.array(df[['x1', 'x2']])
    y_data = np.array(df['y_c'])
    
    x_train = np.vstack(x_data).reshape(-1,2)
    y_train = np.vstack(y_data).reshape(-1,1)
    
    Y_c = [['red' if y else 'blue'] for y in y_train]
    
    # 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错
    x_train = tf.cast(x_train, tf.float32)
    y_train = tf.cast(y_train, tf.float32)
    
    # from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应
    train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
    
    # 生成神经网络的参数,输入层为2个神经元,隐藏层为11个神经元,1层隐藏层,输出层为1个神经元
    # 用tf.Variable()保证参数可训练
    w1 = tf.Variable(tf.random.normal([2, 11]), dtype=tf.float32)
    b1 = tf.Variable(tf.constant(0.01, shape=[11]))
    
    w2 = tf.Variable(tf.random.normal([11, 1]), dtype=tf.float32)
    b2 = tf.Variable(tf.constant(0.01, shape=[1]))
    
    lr = 0.01  # 学习率
    epoch = 400  # 循环轮数
    
    # 训练部分
    for epoch in range(epoch):
        for step, (x_train, y_train) in enumerate(train_db):
            with tf.GradientTape() as tape:  # 记录梯度信息
    
                h1 = tf.matmul(x_train, w1) + b1  # 记录神经网络乘加运算
                h1 = tf.nn.relu(h1)
                y = tf.matmul(h1, w2) + b2
    
                # 采用均方误差损失函数mse = mean(sum(y-out)^2)
                loss = tf.reduce_mean(tf.square(y_train - y))
    
            # 计算loss对各个参数的梯度
            variables = [w1, b1, w2, b2]
            grads = tape.gradient(loss, variables)
    
            # 实现梯度更新
            # w1 = w1 - lr * w1_grad tape.gradient是自动求导结果与[w1, b1, w2, b2] 索引为0,1,2,3 
            w1.assign_sub(lr * grads[0])
            b1.assign_sub(lr * grads[1])
            w2.assign_sub(lr * grads[2])
            b2.assign_sub(lr * grads[3])
    
        # 每20个epoch,打印loss信息
        if epoch % 20 == 0:
            print('epoch:', epoch, 'loss:', float(loss))
    
    # 预测部分
    print("*******predict*******")
    # xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成间隔数值点
    xx, yy = np.mgrid[-3:3:.1, -3:3:.1]
    # 将xx , yy拉直,并合并配对为二维张量,生成二维坐标点
    grid = np.c_[xx.ravel(), yy.ravel()]
    grid = tf.cast(grid, tf.float32)
    # 将网格坐标点喂入神经网络,进行预测,probs为输出
    probs = []
    for x_test in grid:
        # 使用训练好的参数进行预测
        h1 = tf.matmul([x_test], w1) + b1
        h1 = tf.nn.relu(h1)
        y = tf.matmul(h1, w2) + b2  # y为预测结果
        probs.append(y)
    
    # 取第0列给x1,取第1列给x2
    x1 = x_data[:, 0]
    x2 = x_data[:, 1]
    # probs的shape调整成xx的样子
    probs = np.array(probs).reshape(xx.shape)
    plt.scatter(x1, x2, color=np.squeeze(Y_c)) #squeeze去掉纬度是1的纬度,相当于去掉[['red'],[''blue]],内层括号变为['red','blue']
    # 把坐标xx yy和对应的值probs放入contour<[‘kɑntʊr]>函数,给probs值为0.5的所有点上色  plt点show后 显示的是红蓝点的分界线
    plt.contour(xx, yy, probs, levels=[.5])
    plt.show()
    
    # 读入红蓝点,画出分割线,不包含正则化
    # 不清楚的数据,建议print出来查看 
  • 相关阅读:
    psy & vr
    psy 2
    psy
    linux c中select使用技巧
    hostent h_addr_list
    gethostbyname() -- 用域名或主机名获取IP地址
    c_select 调用参数说明
    [NYOJ 737] 石子合并(一)
    [HDU 1059] Dividing
    [HDU 1789] Doing Homework again
  • 原文地址:https://www.cnblogs.com/yangqqq/p/14353938.html
Copyright © 2011-2022 走看看