zoukankan      html  css  js  c++  java
  • AI tensorflow MNIST

    MNIST

    数据

    train-images-idx3-ubyte.gz:训练集图片

    train-labels-idx1-ubyte.gz:训练集图片类别 

    t10k-images-idx3-ubyte.gz:测试集图片

    t10k-labels-idx1-ubyte.gz:测试集图片类别

    训练

    # 加载训练集和测试集数据
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data", one_hot = True)
    
    import os
    # 日志级别
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    # 服务重启的bug
    os.environ['KMP_DUPLICATE_LIB_OK']='True'
    
    # 一张图片一行:28*28=784
    x = tf.placeholder(tf.float32, shape=[None, 784])
    # 一张图片对应10个类别的概率
    y_ = tf.placeholder(tf.float32, shape=[None, 10])
    # 权重
    W = tf.Variable(tf.zeros([784,10]))
    # 偏置
    b = tf.Variable(tf.zeros([10]))
     
    #权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度,避免神经元节点输出恒为0的问题(dead neurons)
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
     
     
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
     
     
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
     
     
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')
     
    #第一层卷积层,32个卷积核去分别关注32个特征
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1,28,28,1])#将单张图片从784维向量重新还原为28x28的矩阵图片,-1表示取出所有的数据
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    #第二层卷积层
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    #全连接层
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    #使用Dropout,训练时为0.5,测试时为1,keep_prob表示保留不关闭的神经元的比例
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    #把1024维的向量转换成10维,对应10个类别
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    #交叉熵
    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    #定义train_step
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    #定义测试准确率
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    #存储训练的模型
    saver = tf.train.Saver()  
    #创建Session和变量初始化
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    #标准训练是20000步,这里为节约时间训练1000步
    for i in range(1000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:#每100步输出一次在验证集上的准确度
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
     
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
     
    saver.save(sess, /path/modelName) #模型存储的路径
    #输出在测试集上的准确度
    print("test accuracy %g"%accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    
    sess.close()
    

      

    预测

  • 相关阅读:
    3.db2性能和优化
    SpringBoot之demo
    1设计模式---工厂模式。
    1.添加maven项目后,tomcat启动失败
    2.如何卸载mysql
    2.hdfs中常用的shell命令
    1.在eclipse上添加maven
    2.hive入门篇
    1.hive数据库调优之路
    2.myeclipse的使用技巧
  • 原文地址:https://www.cnblogs.com/yangwenhuan/p/10621327.html
Copyright © 2011-2022 走看看