#-*- coding: utf-8 -*-
# coding:unicode_escape
#@Time : 2021/3/3 15:10
#@Author : 杨晓
#@File : binary_read.py
#@Software: PyCharm
import tensorflow as tf
import os
tf.compat.v1.disable_eager_execution()
class Cifar(object):
def __init__(self):
self.height = 32
self.width = 32
self.channels = 3
self.image_bytes = self.height * self.width * self.channels
self.label_bytes = 1
self.all_bytes = self.image_bytes + self.label_bytes
# 读取二进制文件
def read_binary(self):
file_name = os.listdir("../tmp/data/cifar-10-batches-bin")
# # 构造文件名列表
file_list = [os.path.join("../tmp/data/cifar-10-batches-bin",file) for file in file_name if file[-3:] == "bin"]
# 构造文件队列
file_queue = tf.compat.v1.train.string_input_producer(file_list)
# 读取并解码
# 读取
reader = tf.compat.v1.FixedLengthRecordReader(self.all_bytes)
key,value = reader.read(file_queue)
# 解码
decoded = tf.compat.v1.decode_raw(value,tf.uint8)
# 将目标值和特征值切片
label = tf.slice(decoded,[0],[self.label_bytes])
image = tf.slice(decoded,[self.label_bytes],[self.image_bytes])
# 调整图片形状 Tensor("Reshape:0", shape=(3, 32, 32), dtype=uint8)
image_reshape = tf.reshape(image,shape=[self.channels,self.height,self.width])
# 将图片的顺序转换为 height width channels
image_transpose = tf.transpose(image_reshape,[1,2,0])
# 调整图片类型
# image_cast = tf.cast(image_transpose,tf.float32)
# 批处理
label_batch,image_batch = tf.compat.v1.train.batch([label,image_transpose],batch_size=100,num_threads=1,capacity=100)
print("image_bath:
",image_batch)
# 开启会话
with tf.compat.v1.Session() as sess:
# 开启线程管理器
coord = tf.compat.v1.train.Coordinator()
threads = tf.compat.v1.train.start_queue_runners(sess=sess,coord=coord)
label_value,image_value, = sess.run([label_batch,image_batch])
print("label_new:
",label_value)
print("image_new:
",image_value)
# 回收子线程
coord.request_stop()
coord.join(threads=threads)
return image_value,label_value
def write_to_tfrecords(self,image_batch,label_batch):
'''
将样本的特征值和目标值写入rfrecords
:return:
'''
with tf.compat.v1.python_io.TFRecordWriter("cifar10.tfrecords") as writer:
# 循环构造example对象,并写入文件
for i in range(100):
image = image_batch[i].tostring()
label = label_batch[i][0]
print("records_image:
",image)
print("records_label:
",label)
example = tf.compat.v1.train.Example(features=tf.compat.v1.train.Features(feature={
"image": tf.compat.v1.train.Feature(bytes_list=tf.compat.v1.train.BytesList(value=[image])),
"label": tf.compat.v1.train.Feature(int64_list=tf.compat.v1.train.Int64List(value=[label])),
}))
# example.SerializeToString()
# 将序列化后的example写入文件
writer.write(example.SerializeToString())
return None
def read_tfrecords(self):
# 构造文件队列
file_queue = tf.compat.v1.train.string_input_producer(["cifar10.tfrecords"])
# 读取与解码
reader = tf.compat.v1.TFRecordReader()
key,value = reader.read(file_queue)
print("key:
",key)
print("value:
",value)
# 解析example
# 解析example
feature = tf.compat.v1.parse_single_example(value, features={
"image": tf.compat.v1.FixedLenFeature([], tf.string),
"label": tf.compat.v1.FixedLenFeature([], tf.int64)
})
image = feature["image"]
label = feature["label"]
print("read_tf_image:
",image)
print("read_tf_label:
",label)
# 解码
image_decode = tf.compat.v1.decode_raw(image,tf.uint8)
print("image_decode:
",image_decode)
# 调整形状
image_reshape = tf.reshape(image_decode,[self.height,self.width,self.channels])
print("image_reshape:
",image_reshape)
# 批处理构造队列
image_batch, label_batch = tf.compat.v1.train.batch([image_reshape, label], batch_size=100, num_threads=2, capacity=100)
print("image_batch:
",image_batch)
print("label_batch:
",label_batch)
with tf.compat.v1.Session() as sess:
# 开启线程管理器
coord = tf.compat.v1.train.Coordinator()
threads = tf.compat.v1.train.start_queue_runners(sess=sess, coord=coord)
image_value, label_value = sess.run([image_batch, label_batch])
print("image_value:
", image_value)
print("label_value:
", label_value)
# 回收资源
coord.request_stop()
coord.join(threads)
return None
if __name__ == '__main__':
#获取文件名
cifar = Cifar()
# image_value,label_value = cifar.read_binary()
# cifar.write_to_tfrecords(image_value,label_value)
cifar.read_tfrecords()