zoukankan      html  css  js  c++  java
  • POJ1158 城市交通Traffic lights IOI 1999 (最短路)

    POJ1158 城市交通Traffic lights IOI 1999 (最短路)

     (1) 问题描述(probolem)

          在d城里交通的安排不同寻常,城中有路口和路口之间的道路,再任意两个不同的路口之间之多有一条道路。从任何一个路口出发,不可能不经过其他路口直接回到该路口。在同一条路道上反正两个方向所需要的通过时间是相同的。在每个路口上只有一盏信号灯,信号灯的颜色在蓝色和紫色之间有规律的交替变化:蓝色有特定的持续时间,紫色也有特定的持续时间,再任意一条道路的两个路口之间,当且仅当这两个路口的信号灯在同一时刻颜色相同时,车辆才被允许实力一个路口驶向另一个路口。如果车辆到达一个路口时,该路口的信号灯正在切换,那么车辆必须组收信号灯的信号。车辆可以在路口等待。你拿到城市地图会显示出以下信息:

    所有道路的通过时间(整数)

    每一个路口上信号灯两种颜色信号各自的持续时间(整数)

    枚一个路口的信号灯得出初始颜色及其发生变化之前的保持时间

    你的任务是找出一条路径,使得车辆在交通开始时,用最短的时间,从指定的出发路口到达到指定的目的路口。假设有超过这一条这样的路径,你只需找出一条即可。

    (2)假设条件(assumptions)

           2<=n<=300,这里n是路口的数量,路口用数字1至n标号。

           1<=m<=14,000,这里m是道路的数量。

           1<=<=100,这里lij是从路口i到路口j所需要的时间。

           1 £ tic £ 100,这里tic是路口i的信号灯显示颜色c的持续时间。下标c为B,或P,分别代表蓝色和紫色。

           1  £ ric £ tic这里ric是路口i信号灯初始颜色c的保持时间。

    (3)输入(input)

           输入是名为lights.inp的正式文件(text file).

              第一行保包含两个数:出发路口和目的路口的标号

              第二行业包含两个数:N,M.

              以下N行包行N个路口的信息,输入文件的第(I+2)行是关于路口I的信息:其中Ci

    或是B,或是P,表示路口的信号灯的初始颜色;ricCi颜色的保持时间;tIb是蓝色的持续时间,

    tiP是紫颜色的持续时间。

    最后m行包含m条道路的信息,每一行有三个数:i, j, lij分别是该道路所连接的两个路口的标号及车辆通过时间。

    (4)输出(output)

           输出文件必须是名为lights.out的正文文件(text file)

           如果所搜索的路径存在,则: 

               第一行包含从出发路口经最捷路径到目的路口所需要的时间。

               第二行包含你所发现的最捷路径所经过路口的标号序列,你必须按通过的顺序输出路口的标号。因此,该行的第一个数应是出发路口的标号,而最后一个数则应是目的路口的标号。

           如果所搜索的路径不存在,则:

               输出文件只有一行,该行知包含一个整数0

    (5)例子(example)

    lights.inp                        lights.out:

           
     

    1 4

    4 5

    B 2 16 99

    P 6 32 13

    P 2 8 7 4

    P 38 96 49

    1 2 4

    1 3 40

    2 3 75

    2 4 76

    3 4 77

     
       

    127

    1 2 4

     
     

    解题报告

    这个题构建最短路模型比较恶心。首先,在读入边的时候判断那条路永远不可能走,即灯变化的周期互相错开。之后,在最短路判断时要判断颜色是否一样,如果一样,就直接松弛,否者就计算至少要多久才会颜色一样。再判断是否可以松弛。

    #include<bits/stdc++.h>
    #define Pair pair<int,int>
    #define MAXN 400+10
    #define MAXM 40000+1
    using namespace std;
    int n,m,num,head[MAXN],s,t,pre[MAXN],dis[MAXN],v[MAXM];
    int bian[MAXM],ans[MAXN];
    struct Edge{
        int dis,next,to,exi,from;
    }edge[MAXM];
    struct Crossing{
        int co,tc,tp,tb;
    }c[MAXN];
    void add(int from,int to,int dis)
    {
        edge[++num].next=head[from];
        edge[num].to=to;
        edge[num].dis=dis;
        edge[num].from=from;
        head[from]=num;
        edge[num].exi=1;
    }
    int color(int x,int t)
    {
        int q=t-c[x].tc,r=q%(c[x].tp+c[x].tb);
        if(q<0) 
            return c[x].co;
        if(c[x].co==1)
        {
            if(r<c[x].tp) return 2;
            else if(r>=c[x].tp) return 1;
        }else
        if(c[x].co==2)
        {
            if(r<c[x].tb) return 1;
            else if(r>=c[x].tb) return 2;
        }
    }
    void dij()
    {
        memset(dis,0,sizeof(dis));
        memset(pre,0,sizeof(pre));
        memset(v,0,sizeof(v));
        priority_queue<Pair,vector<Pair>,greater<Pair> > h;
        for(int i=1;i<=n;i++) dis[i]=99999999;
        dis[s]=0;
        h.push(Pair(dis[s],s));
        while(h.size()>0)
        {
            int k=h.top().second;h.pop();
            if(v[k]) continue;
            v[k]=1;
            for(int i=head[k];i;i=edge[i].next)
            if(dis[k]+edge[i].dis<dis[edge[i].to])
            {
                int d1=dis[edge[i].to],d2=0,dd=dis[edge[i].to]-dis[k],flag=0;
                int x=edge[i].to,y=edge[i].from;
                if(color(edge[i].to,dis[k])==color(edge[i].from,dis[k]))
                    d2=dis[k]+edge[i].dis,flag=1;
                else
                    for(int j=dis[k];j<=dis[edge[i].to];j++)
                    {
                        if(color(edge[i].to,j)==color(edge[i].from,j)) 
                        {d2=j+edge[i].dis;flag=1;break;}
                    }
                if(flag==1&&d2<dis[edge[i].to])
                {
                    dis[edge[i].to]=d2;
                    pre[edge[i].to]=i;
                    h.push(Pair(d2,edge[i].to));
                }
            }
        }
    }
    
    int main()
    {
    
        scanf("%d%d%d%d",&s,&t,&n,&m);
        for(int i=1;i<=n;i++)
        {
            char k[10];
            scanf("%s%d%d%d",k,&c[i].tc,&c[i].tb,&c[i].tp);
            if(k[0]=='B') c[i].co=1;
            else if(k[0]=='P') c[i].co=2;
        }
        for(int i=1;i<=m;i++)
        {
            int x,y,z,e=0;
            scanf("%d%d%d",&x,&y,&z);
            if(c[x].tp==c[y].tb&&c[y].tp==c[x].tb)
            {
                if(c[x].tc==c[y].tc&&c[x].co!=c[y].co) e=1;
                else if(c[x].tc!=c[y].tc&&abs(c[x].tc-c[y].tc)%(c[x].tp+c[x].tb)==0) e=1;
                else if(c[x].tc==c[y].tc&&abs(c[x].tc-c[y].tc)%(c[x].tp+c[x].tb)==c[x].tb) e=1;
                else if(c[x].tc==c[y].tc&&abs(c[x].tc-c[y].tc)%(c[x].tp+c[x].tb)==c[x].tp) e=1;            
            }
            if(!e)
            add(x,y,z),
            add(y,x,z);
        }
        
        dij();
        if(dis[t]==99999999) {printf("0
    ");return 0;}
        printf("%d
    ",dis[t]);
        for(int i=pre[t];i;i=pre[edge[i].from])
            ans[++ans[0]]=edge[i].from;
        for(int i=ans[0];i>=1;i--)
        {
            printf("%d ",ans[i]);
        }printf("%d
    ",t);
        return 0;
    }
  • 相关阅读:
    CSS自定义三角形
    完整例子-正则控制input的输入
    vux环境配置
    纯JS实现加载更多(VUE框架)
    随时监测屏幕大小,解决手机端小键盘遮挡输入框问题
    [转]Javascript中几种较为流行的继承方式
    使用字面量,比new更加有效
    2.ES6引进的新特性——类Class
    vue-router 基本使用
    插槽slot
  • 原文地址:https://www.cnblogs.com/yangyaojia/p/6346507.html
Copyright © 2011-2022 走看看