zoukankan      html  css  js  c++  java
  • POJ 2553 The Bottom of Graph 强连通图题解

    Description

    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
    Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices(v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
    Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

    Input

    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

    Output

    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

    Sample Input

    3 3
    1 3 2 3 3 1
    2 1
    1 2
    0
    

    Sample Output

    1 3
    2

    题意的本质是查找没有出度的强连通子图,没有出度就是sink。the bottom of graph了。

    就是利用Tarjan算法求强连通子图,并要用标识号标识各个强连通子图,然后记录好各个顶点属于哪强连通子图。


    程序带具体的注解:

    #include <stdio.h>
    #include <stdlib.h>
    #include <vector>
    #include <algorithm>
    #include <stack>
    using namespace std;
    
    const int MAX_V = 5001;
    vector<int> graAdj[MAX_V];//vector表示的邻接图
    int conNo, vToCon[MAX_V];//强连通子图标号及顶点相应强连通子图号的数组
    int low[MAX_V];//标识最低标识号。假设都属于这个标识号的顶点都属于同一连通子图
    int stk[MAX_V], top;//数组表示栈
    bool vis[MAX_V];//记录是否訪问过的顶点
    int out[MAX_V];//强连通子图的出度。假设出度为零。那么改强连通子图为sink
    
    template<typename T>
    inline bool equ(T t1, T t2) { return t1 == t2; }
    
    void dfsTar(int u, int no = 1)
    {
    	low[u] = no;//每递归进一个顶点。初始表示low[]
    	stk[++top] = u;//每一个顶点记录入栈
    	vis[u] = true;//标志好是否訪问过了
    
    	int n = (int)graAdj[u].size();
    	for (int i = 0; i < n; i++)
    	{
    		int v = graAdj[u][i];
    		if (!vis[v])
    		{
    			dfsTar(v, no+1);//这里递归
    			if (low[u] > low[v]) low[u] = low[v];//更新最低标识号
    		}
    		else if (!vToCon[v] && low[u] > low[v]) low[u] = low[v];//更新
    	}
    	if (equ(low[u], no))//最低标识号和递归进的初始号同样就找到一个子图了
    	{
    		++conNo;
    		int v;
    		do
    		{
    			v = stk[top--];//出栈
    			vToCon[v] = conNo;//顶点相应到子图号
    		} while (v != u);//出栈到本顶点,那么改子图全部顶点出栈完成
    	}
    }
    
    void Tarjan(int n)
    {
    	conNo = 0;//记得前期的清零工作
    	fill(vToCon, vToCon+n+1, 0);
    	fill(low, low+n+1, 0);
    	fill(vis, vis+n+1, false);
    	top = -1;
    
    	for (int u = 1; u <= n; u++) if (!vis[u]) dfsTar(u);
    }
    
    int main()
    {
    	int V, E, u, v;
    	while(~scanf("%d %d", &V, &E) && V)
    	{
    		for (int i = 1; i <= V; i++)
    		{
    			graAdj[i].clear();//清零
    		}
    		for (int i = 0; i < E; i++)
    		{
    			scanf("%d %d", &u, &v);
    			graAdj[u].push_back(v);//建立vector表示的邻接表
    		}
    		Tarjan(V);
    		fill(out, out+conNo+1, 0);
    		for (int u = 1; u <= V; u++)
    		{
    			int n = graAdj[u].size();
    			for (int i = 0; i < n; i++)
    			{
    				int v = graAdj[u][i];
    				if (vToCon[u] != vToCon[v])
    				{
    					out[vToCon[u]]++;//记录强连通子图号的出度数
    				}
    			}
    		}
    		for (int u = 1; u <= V; u++)//出度为零,即为答案:Graph Bottom
    		{
    			if (!out[vToCon[u]]) printf("%d ", u);
    		}
    		putchar('
    ');
    	}
    	return 0;
    }



  • 相关阅读:
    [示例] Firemonkey 面包屑导航
    [试玩] FMXLinux (Firemonkey for Linux) Linux 桌面开发(第三方插件)
    [修正] Firemonkey SpeedButton 鼠标移开按钮后 IsPressed 为 False 的问题
    [笔记] FireDAC DataSet 导入及导出 JSON
    [笔记] 升級到 Delphi 10.2 Tokyo 笔记
    [示例] 用代码设置 ListView 颜色 (只适用 Win 平台,无需修改官方源码)
    [上架] iOS 上架更新版本号建议
    [教学] Delphi IDE 文件搜寻功能
    Loadrunner相关问题
    数据导出excel数据丢失
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/6704896.html
Copyright © 2011-2022 走看看