zoukankan      html  css  js  c++  java
  • 牛顿迭代法(Newton's Method)

    牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出。可是,这


    一方法在牛顿生前并未公开发表(讨厌的数学家们还是鼓捣出来了)
    牛顿法的作用是使用迭代的方法来求解函数方程的根。

    简单地说,牛顿法就是不断求取切线的过程。


    对于形如f(x)=0的方程,首先随意估算一个解x0,再把该预计值代入原方程中。

    因为一般不会正好选择到正确的解。所以有f(x)=a。这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1。


    f(x)=0中精确解的意义是,当取得解的时候。函数值为零(即f(x)的精确解是函数的零点)。因此,x1比x0更加接近精确的解。仅仅要不断以此方法更新x,就能够取得无限接近的精确的解。




    可是,有可能会遇到牛顿迭代法无法收敛的情况。

    比方函数有多个零点,或者函数不连续的时候。




    牛顿法举例


    以下介绍使用牛顿迭代法求方根的样例。牛顿迭代法是已知的实现求方根最快的方法之中的一个,仅仅须要迭代几次后就能得到相当精确的结果。




    首先设x的m次方根为a。



    以下是matlab的编程:

    syms x 
    f=x^x-10; 
    df=diff(f,x); 
    
    eps=1e-6; 
    x0=10; 
    cnt=0; 
    MAXCNT=200; %最大循环次数 
    while cnt<MAXCNT %防止无限循环 
    x1=x0-subs(f,x,x0)/subs(df,x,x0); %去掉这个分号,能够看到迭代过程.
    if (abs(x1-x0)<eps) 
    break; 
    end 
    x0=x1; 
    cnt=cnt+1; 
    end 
    if cnt==MAXCNT 
    disp '不收敛' 
    else 
    vpa(x1,8) 
    end


  • 相关阅读:
    通过 WakaTime 统计你写代码的时长
    CCF 202012-3 带配额的文件系统
    1
    prometheus 获取cpu利用率
    springboot使用@data注解,减少不必要代码-lombok插件
    django官方教程部署simpleui时候发现加载不到静态文件解决办法
    echarts关系图研究01
    SpringBoot代码方式禁用Druid Monitor
    virtualbox给已有磁盘扩展容量
    centos7 ssh免密登录配置
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/6829336.html
Copyright © 2011-2022 走看看