zoukankan      html  css  js  c++  java
  • POJ

    Description

    You may have wondered why most extraterrestrial life forms resemble humans, differing by superficial traits such as height, colour, wrinkles, ears, eyebrows and the like. A few bear no human resemblance; these typically have geometric or amorphous shapes like cubes, oil slicks or clouds of dust.

    The answer is given in the 146th episode of Star Trek - The Next Generation, titled The Chase. It turns out that in the vast majority of the quadrant's life forms ended up with a large fragment of common DNA.

    Given the DNA sequences of several life forms represented as strings of letters, you are to find the longest substring that is shared by more than half of them.

    Input

    Standard input contains several test cases. Each test case begins with 1 ≤ n ≤ 100, the number of life forms. n lines follow; each contains a string of lower case letters representing the DNA sequence of a life form. Each DNA sequence contains at least one and not more than 1000 letters. A line containing 0 follows the last test case.

    Output

    For each test case, output the longest string or strings shared by more than half of the life forms. If there are many, output all of them in alphabetical order. If there is no solution with at least one letter, output "?". Leave an empty line between test cases.

    Sample Input

    3
    abcdefg
    bcdefgh
    cdefghi
    3
    xxx
    yyy
    zzz
    0

    题意:求不小于 k 个字符串中的最长子串。


    思路:将 n 个字符串连起来,中间用不同样的且没有出如今字符串中的字符隔开,求后缀数组。然后二分答案,将后缀分成若干组。推断每组的后缀是否出如今不小于 k 个的原串中。

    分两次计算。第一次二分答案,第二次输出。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    typedef long long ll;
    using namespace std;
    const int maxn = 400005;
    
    int sa[maxn]; 
    int t1[maxn], t2[maxn], c[maxn];
    int rank[maxn], height[maxn];
    
    void build_sa(int s[], int n, int m) {
        int i, j, p, *x = t1, *y = t2;
        for (i = 0; i < m; i++) c[i] = 0;
        for (i = 0; i < n; i++) c[x[i] = s[i]]++;
        for (i = 1; i < m; i++) c[i] += c[i-1];
        for (i = n-1; i >= 0; i--) sa[--c[x[i]]] = i;
    
        for (j = 1; j <= n; j <<= 1) {
            p = 0;
            for (i = n-j; i < n; i++) y[p++] = i;
            for (i = 0; i < n; i++) 
                if (sa[i] >= j) 
                    y[p++] = sa[i] - j;
            for (i = 0; i < m; i++) c[i] = 0;
            for (i = 0; i < n; i++) c[x[y[i]]]++;
            for (i = 1; i < m; i++) c[i] += c[i-1];
            for (i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
    
            swap(x, y);
            p = 1, x[sa[0]] = 0;
            for (i = 1; i < n; i++) 
                x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+j] == y[sa[i]+j] ? p-1 : p++;
    
            if (p >= n) break;
            m = p;
        }
    }
    
    void getHeight(int s[],int n) {
        int i, j, k = 0;
        for (i = 0; i <= n; i++)
            rank[sa[i]] = i;
    
        for (i = 0; i < n; i++) {
            if (k) k--;
            j = sa[rank[i]-1];
            while (s[i+k] == s[j+k]) k++;
            height[rank[i]] = k;
        }
    }
    
    int k, in[maxn], r[maxn], l[maxn];
    char str[maxn];
    
    int check(int mid, int n, int out) {
        int vis[105];
        int cnt = 0;
        memset(vis, 0, sizeof(vis));
    
        for (int i = 1; i <= n; i++) {
            if (height[i] < mid) {
                if (out && cnt > k / 2) {
                    for (int j = 0, m = sa[i-1]; j < mid; j++)
                        printf("%c", r[j+m]);
                    printf("
    ");
                }
                cnt = 0;
                memset(vis, 0, sizeof(vis));
            }
            else {
                if (!vis[in[sa[i-1]]]) {
                    vis[in[sa[i-1]]] = 1;
                    cnt++;
                }
                if (!vis[in[sa[i]]]) {
                    vis[in[sa[i]]] = 1;
                    cnt++;
                }
                if (!out && cnt > k / 2)
                    return 1;
            }
        }
        return 0;
    }
    
    int main() {
        int first = 0;
        while (scanf("%d", &k) != EOF && k) {
            int n = 0;
            if (first) printf("
    ");
            else first = 1;
    
            for (int i = 0; i < k; i++) {
                scanf("%s", str);
                l[i] = strlen(str);
                for (int j = n; j < n+l[i]; j++) {
                    r[j] = str[j-n];
                    in[j] = i;
                }
                n += l[i] + 1;
                r[n-1] = 128 + i;
            }
            n--;
            r[n] = 0;
            build_sa(r, n+1, 300);
            getHeight(r, n);
    
            int left = 0, right = 1000, mid, ans = -1;
            while (left <= right) {
                mid = (left + right) / 2;
                if (check(mid, n, 0)) {
                    ans = mid;
                    left = mid + 1;
                }
                else right = mid - 1;
            }
    
            if (ans <= 0) printf("?

    "); else check(ans, n, 1); } return 0; }





  • 相关阅读:
    再学 GDI+[11]: DrawCurve 绘制曲线
    再学 GDI+[7]: DrawLines 绘制一组直线
    再学 GDI+[9]: DrawPolygon 绘制多边形
    再学 GDI+[10]: DrawClosedCurve 绘制闭合曲线
    再学 GDI+[13]: DrawBezier 绘制贝塞尔线
    再学 GDI+[8]: DrawRectangles 绘制一组矩形
    再学 GDI+[5]: DrawArc 绘制弧线
    再学 GDI+[12]: 准备工作 矩形命中
    再学 GDI+[6]: DrawPie 绘制饼形
    判断字符串中子串个数的函数
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/6927544.html
Copyright © 2011-2022 走看看