zoukankan      html  css  js  c++  java
  • pandas 7 合并 merge 水平合并,数据会变宽

    • pd.merge( df1, df2, on=['key1', 'key2'], left_index=True, right_index=True, how=['left', 'right', 'outer', 'inner'], indicator='indicator_column', suffixes=['_boy', '_girl'] )
    from __future__ import print_function
    import pandas as pd
    

    merging two df by key/keys, on='key'. (may be used in database)

    # merging two df by key/keys. (may be used in database)
    # simple example
    left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                           'A': ['A0', 'A1', 'A2', 'A3'],
                           'B': ['B0', 'B1', 'B2', 'B3']})
    right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                            'C': ['C0', 'C1', 'C2', 'C3'],
                            'D': ['D0', 'D1', 'D2', 'D3']})
    print(left)
    print(right)
    res = pd.merge(left, right, on='key')  # 基于列标签为‘key’合并
    print(res)
    
    >   key   A   B
    > 0  K0  A0  B0
    > 1  K1  A1  B1
    > 2  K2  A2  B2
    > 3  K3  A3  B3
    
    >   key   C   D
    > 0  K0  C0  D0
    > 1  K1  C1  D1
    > 2  K2  C2  D2
    > 3  K3  C3  D3
    
    >   key   A   B   C   D
    > 0  K0  A0  B0  C0  D0
    > 1  K1  A1  B1  C1  D1
    > 2  K2  A2  B2  C2  D2
    > 3  K3  A3  B3  C3  D3
    

    consider two keys, on=['key1', 'key2']

    # consider two keys
    left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                         'key2': ['K0', 'K1', 'K0', 'K1'],
                            'A': ['A0', 'A1', 'A2', 'A3'],
                            'B': ['B0', 'B1', 'B2', 'B3']})
    right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                          'key2': ['K0', 'K0', 'K0', 'K0'],
                             'C': ['C0', 'C1', 'C2', 'C3'],
                             'D': ['D0', 'D1', 'D2', 'D3']})
    print(left)
    print(right)
    
    >   key1 key2   A   B
    > 0   K0   K0  A0  B0
    > 1   K0   K1  A1  B1
    > 2   K1   K0  A2  B2
    > 3   K2   K1  A3  B3
     
    >   key1 key2   C   D
    > 0   K0   K0  C0  D0
    > 1   K1   K0  C1  D1
    > 2   K1   K0  C2  D2
    > 3   K2   K0  C3  D3
    
    res = pd.merge(left, right, on=['key1', 'key2'], how='inner')  # default for how='inner'
    print(res)  # 求交集
    res = pd.merge(left, right, on=['key1', 'key2'], how='outer')  # default for how='inner'
    print(res)  # 求并集
    
    >   key1 key2   A   B   C   D
    > 0   K0   K0  A0  B0  C0  D0
    > 1   K1   K0  A2  B2  C1  D1
    > 2   K1   K0  A2  B2  C2  D2
    
    >   key1 key2    A    B    C    D
    > 0   K0   K0   A0   B0   C0   D0
    > 1   K0   K1   A1   B1  NaN  NaN
    > 2   K1   K0   A2   B2   C1   D1
    > 3   K1   K0   A2   B2   C2   D2
    > 4   K2   K1   A3   B3  NaN  NaN
    > 5   K2   K0  NaN  NaN   C3   D3
    

    how = ['left', 'right', 'outer', 'inner']

    # how = ['left', 'right', 'outer', 'inner']
    res = pd.merge(left, right, on=['key1', 'key2'], how='right')
    print(res)  # 以右边的数据为标准,来合并
    
    >   key1 key2    A    B   C   D
    > 0   K0   K0   A0   B0  C0  D0
    > 1   K1   K0   A2   B2  C1  D1
    > 2   K1   K0   A2   B2  C2  D2
    > 3   K2   K0  NaN  NaN  C3  D3
    

    显示数据的来源,多_merge这一列,默认是false不显示:indicator=True 或 indicator='indicator_column' 自定义indicator列名称

    # indicator
    df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
    df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
    
    print(df1)
    print(df2)
    res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
    print(res)
    
    >    col1 col_left
    > 0     0        a
    > 1     1        b
     
    >    col1  col_right
    > 0     1          2
    > 1     2          2
    > 2     2          2
    
    >    col1 col_left  col_right      _merge
    > 0     0        a        NaN   left_only
    > 1     1        b        2.0        both
    > 2     2      NaN        2.0  right_only
    > 3     2      NaN        2.0  right_only
    
    # give the indicator a custom name
    res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
    print(res)  # 设置这列的标题为'indicator_column'
    
    >    col1 col_left  col_right indicator_column
    > 0     0        a        NaN        left_only
    > 1     1        b        2.0             both
    > 2     2      NaN        2.0       right_only
    > 3     2      NaN        2.0       right_only
    

    handle overlapping 信息重叠: suffixes=['_boy', '_girl']

    # handle overlapping
    boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
    girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})
    res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')
    
    print(boys)
    print(girls)
    print(res)
    
    >     k  age
    > 0  K0    1
    > 1  K1    2
    > 2  K2    3
    
    >     k  age
    > 0  K0    4
    > 1  K0    5
    > 2  K3    6
    
    >     k  age_boy  age_girl
    > 0  K0        1         4
    > 1  K0        1         5
    
    res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='outer')
    print(res)  # 这里的K0,K1理解成姓名,同一个姓名对应了不同的年龄,说明信息重叠了。
    
    >     k  age_boy  age_girl
    > 0  K0      1.0       4.0
    > 1  K0      1.0       5.0
    > 2  K1      2.0       NaN
    > 3  K2      3.0       NaN
    > 4  K3      NaN       6.0
    

    merged by index: left_index=True, right_index=True

    # merged by index
    left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                         'B': ['B0', 'B1', 'B2']},
                       index=['K0', 'K1', 'K2'])
    right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                          'D': ['D0', 'D2', 'D3']},
                        index=['K0', 'K2', 'K3'])
    
    print(left)
    print(right)
     
    >      A   B
    > K0  A0  B0
    > K1  A1  B1
    > K2  A2  B2
     
    >      C   D
    > K0  C0  D0
    > K2  C2  D2
    > K3  C3  D3
    
    # left_index and right_index  默认是False 
    res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
    print(res)  # 并
    res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
    print(res)  # 交
    
    >       A    B    C    D
    > K0   A0   B0   C0   D0
    > K1   A1   B1  NaN  NaN
    > K2   A2   B2   C2   D2
    > K3  NaN  NaN   C3   D3
    
    >      A   B   C   D
    > K0  A0  B0  C0  D0
    > K2  A2  B2  C2  D2
    

    join:join function in pandas is similar with merge. If know merge, you will understand join

    END

  • 相关阅读:
    LeetCode100——same tree
    Stl——Vector.erase()用法
    xor异或逻辑运算
    爬楼梯问题——迭代or递归
    简单博弈论取石子
    纪念我的leetcode开门之旅
    JiuDuOj——1049
    [Codeforces 872]比赛记录
    [BZOJ 4563]放棋子
    10.14
  • 原文地址:https://www.cnblogs.com/yangzhaonan/p/10437125.html
Copyright © 2011-2022 走看看