zoukankan      html  css  js  c++  java
  • pytorch 4 regression 回归

    import torch
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    # torch.manual_seed(1)    # reproducible
    
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # 将1维数据转换成2维数据,torch不能处理1维数据。x data (tensor), shape=(100, 1)
    y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
    
    # torch can only train on Variable, so convert them to Variable
    # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
    # x, y = Variable(x), Variable(y)
    
    # plt.scatter(x.data.numpy(), y.data.numpy())
    # plt.show()  # 有噪音的抛物线图
    
    
    class Net(torch.nn.Module):  # 输入特征,线性处理进入隐藏层的数据,线性处理进入输出层的数据
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
            self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
    
        def forward(self, x):   # 激活一下进入隐藏层的数据
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    net = Net(n_feature=1, n_hidden=10, n_output=1)     # define the network 的大小
    print(net)  # 显示网络结构 net architecture  
    
    > Net(
    >   (hidden): Linear(in_features=1, out_features=10, bias=True)
    >   (predict): Linear(in_features=10, out_features=1, bias=True)
    > )
    
    optimizer = torch.optim.SGD(net.parameters(), lr=0.2)  # 设置优化器优化网络(优化参数,学习率)
    loss_func = torch.nn.MSELoss()  # 均方差处理回归问题 this is for regression mean squared loss
    
    # plt.ion()   # something about plotting
    
    for t in range(200):  # 训练的过程
        prediction = net(x)     # input x and predict based on x
    
        loss = loss_func(prediction, y)     # 计算预测值和真实值的误差,预测值在前面,顺序不同可能影响结算结果 must be (1. nn output, 2. target)
    
        optimizer.zero_grad()   # 梯度重置为零 clear gradients for next train
        loss.backward()         # 开始这次的反向传递,计算梯度 backpropagation, compute gradients
        optimizer.step()        # 使用优化器优化梯度,apply gradients
    
        if t % 5 == 0:   
            # 可视化显示训练过程 plot and show learning process
            plt.cla()
            plt.scatter(x.data.numpy(), y.data.numpy())
            plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
            plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
            plt.pause(0.1)
    
    # plt.ioff()
    plt.show()
    

    END

  • 相关阅读:
    成功引爆
    pecompact2脱壳手记
    象棋
    今天小雨
    出错了,怎么办?
    设计模式——Adapter模式
    表设计中应注意的2点
    设计模式——Singleton模式
    设计模式——Facade模式
    设计模式——Strategy模式
  • 原文地址:https://www.cnblogs.com/yangzhaonan/p/10439455.html
Copyright © 2011-2022 走看看