zoukankan      html  css  js  c++  java
  • pytorch 8 CNN 卷积神经网络

    # library
    # standard library
    import os
    
    # third-party library
    import torch
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    
    # torch.manual_seed(1)    # reproducible
    
    # Hyper Parameters
    EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
    BATCH_SIZE = 50
    LR = 0.001              # learning rate
    DOWNLOAD_MNIST = False
    
    
    # Mnist digits dataset
    if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
        # not mnist dir or mnist is empyt dir
        DOWNLOAD_MNIST = True
    
    train_data = torchvision.datasets.MNIST(
        root='./mnist/',
        train=True,                                     # this is training data
        transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                        # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=DOWNLOAD_MNIST,
    )
    
    # plot one example   每个图片都是灰度图片,高度为1,长宽为28;RGB图片的高度为3。
    print(train_data.train_data.size())                 # (60000, 28, 28)
    print(train_data.train_labels.size())               # (60000)
    plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[0])
    plt.show()
    
    # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    # pick 2000 samples to speed up testing
    test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
    test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
    test_y = test_data.test_labels[:2000]
    
    
    class CNN(nn.Module):
        def __init__(self):
            super(CNN, self).__init__()
            self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
                nn.Conv2d(
                    in_channels=1,              # 灰度图片的高度为1,input height
                    out_channels=16,            # 16个卷积,之后高度为从1变成6,长宽不变,n_filters
                    kernel_size=5,              # 5*5宽度的卷积,filter size
                    stride=1,                   # 步幅为1,filter movement/step
                    padding=2,                  # 周围填充2圈0,if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
                ),                              # output shape (16, 28, 28)
                nn.ReLU(),                      # 激活时,图片长宽高不变,activation
                nn.MaxPool2d(kernel_size=2),    # 4合1的池化,之后图片的高度不变,长宽减半,choose max value in 2x2 area, output shape (16, 14, 14)
            )
            self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
                nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
                nn.ReLU(),                      # activation
                nn.MaxPool2d(2),                # output shape (32, 7, 7)
            )
            self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)      # 考虑bach之后的数据输出是(batch, 32, 7, 7)
            x = x.view(x.size(0), -1)  # 保持bach不变,将数据展开成一行的,flatten the output of conv2 to (batch_size, 32 * 7 * 7)
            output = self.out(x)
            return output, x    # return x for visualization
    
    
    cnn = CNN()
    print(cnn)  # net architecture
    
    optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
    loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted
    
    # following function (plot_with_labels) is for visualization, can be ignored if not interested
    from matplotlib import cm
    try: from sklearn.manifold import TSNE; HAS_SK = True
    except: HAS_SK = False; print('Please install sklearn for layer visualization')
    def plot_with_labels(lowDWeights, labels):
        plt.cla()
        X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
        for x, y, s in zip(X, Y, labels):
            c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
        plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)
    
    plt.ion()
    # training and testing
    for epoch in range(EPOCH):
        for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
    
            output = cnn(b_x)[0]               # cnn output
            loss = loss_func(output, b_y)   # cross entropy loss
            optimizer.zero_grad()           # clear gradients for this training step
            loss.backward()                 # backpropagation, compute gradients
            optimizer.step()                # apply gradients
    
            if step % 50 == 0:
                test_output, last_layer = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
                if HAS_SK:
                    # Visualization of trained flatten layer (T-SNE)
                    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
                    plot_only = 500
                    low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
                    labels = test_y.numpy()[:plot_only]
                    plot_with_labels(low_dim_embs, labels)
    plt.ioff()
    
    # print 10 predictions from test data
    test_output, _ = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')
    

    打印网络结构

    print(cnn)  # net architecture
    
    > CNN(
    >   (conv1): Sequential(
    >     (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    >     (1): ReLU()
    >     (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    >   )
    >   (conv2): Sequential(
    >     (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    >     (1): ReLU()
    >     (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    >   )
    >   (out): Linear(in_features=1568, out_features=10, bias=True)
    > )
    

    打印训练过程

    Epoch:  0 | train loss: 2.3170 | test accuracy: 0.11
    Epoch:  0 | train loss: 0.2893 | test accuracy: 0.83
    Epoch:  0 | train loss: 0.4333 | test accuracy: 0.90
      .......
    Epoch:  0 | train loss: 0.1268 | test accuracy: 0.98
    

    从测试数据中打印10个预测

    # print 10 predictions from test data
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')
    
    > [7 2 1 0 4 1 4 9 5 9] prediction number
    > [7 2 1 0 4 1 4 9 5 9] real number
    

    END

  • 相关阅读:
    uboot 环境变量
    U-boot的环境变量: bootcmd 和bootargs
    linux中的rootfs/initrd/ramfs/initramfs
    关于Linux启动时挂载rootfs的几种方式
    u-boot-2011.06在基于s3c2440开发板的移植之引导内核与加载根文件系统
    MySQL列出当前月的每一天
    SQL 标量函数-----日期函数 day() 、month()、year()
    mysql 中 DATE_ADD函数和 DATE_SUB函数用法
    mysql 中 DATE_ADD(date,INTERVAL expr type)
    mysql中date_add()函数的使用?
  • 原文地址:https://www.cnblogs.com/yangzhaonan/p/10440426.html
Copyright © 2011-2022 走看看