zoukankan      html  css  js  c++  java
  • RTEMS API

    常用函数

    rtems_interrupt_catch

    intrcatch.c cpukit temssrc 1468 2003/9/5 11

    /*  rtems_interrupt_catch
     *
     *  This directive allows a thread to specify what action to take when
     *  catching signals.
     *
     *  Input parameters:
     *    new_isr_handler - address of interrupt service routine (isr)
     *    vector          - interrupt vector number
     *    old_isr_handler - address at which to store previous ISR address
     *
     *  Output parameters:
     *    RTEMS_SUCCESSFUL - always succeeds
     *    *old_isr_handler  - previous ISR address
     */
    
    rtems_status_code rtems_interrupt_catch(
      rtems_isr_entry      new_isr_handler,
      rtems_vector_number  vector,
      rtems_isr_entry     *old_isr_handler
    )
    {
      if ( !_ISR_Is_vector_number_valid( vector ) )
        return RTEMS_INVALID_NUMBER;
    
      if ( !_ISR_Is_valid_user_handler( (void *) new_isr_handler ) )
        return RTEMS_INVALID_ADDRESS;
    
      if ( !_ISR_Is_valid_user_handler( (void *) old_isr_handler ) )
        return RTEMS_INVALID_ADDRESS;
    
      _ISR_Install_vector(
        vector, (proc_ptr)new_isr_handler, (proc_ptr *)old_isr_handler );
    
      return RTEMS_SUCCESSFUL;
    }
    View Code

    isr.h cpukitscoreinclude temsscore 6447 2003/9/5

    /*
     *  _ISR_Install_vector
     *
     *  DESCRIPTION:
     *
     *  This routine installs new_handler as the interrupt service routine
     *  for the specified vector.  The previous interrupt service routine is
     *  returned as old_handler.
     */
    
    #define _ISR_Install_vector( _vector, _new_handler, _old_handler ) 
      _CPU_ISR_install_vector( _vector, _new_handler, _old_handler )
    View Code

    cpu.c cpukitscorecpusparc 9248 2003/9/5 81

    /*PAGE
     *
     *  _CPU_ISR_install_vector
     *
     *  This kernel routine installs the RTEMS handler for the
     *  specified vector.
     *
     *  Input parameters:
     *    vector       - interrupt vector number
     *    new_handler  - replacement ISR for this vector number
     *    old_handler  - pointer to former ISR for this vector number
     *
     *  Output parameters: 
     *    *old_handler - former ISR for this vector number
     *
     */
    
    void _CPU_ISR_install_vector(
      unsigned32  vector,
      proc_ptr    new_handler,
      proc_ptr   *old_handler
    )
    {
       unsigned32 real_vector;
       proc_ptr   ignored;
    
      /*
       *  Get the "real" trap number for this vector ignoring the synchronous
       *  versus asynchronous indicator included with our vector numbers.
       */
    
       real_vector = SPARC_REAL_TRAP_NUMBER( vector );
    
       /*
        *  Return the previous ISR handler.
        */
    
       *old_handler = _ISR_Vector_table[ real_vector ];
    
       /*
        *  Install the wrapper so this ISR can be invoked properly.
        */
    
       _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
    
       /*
        *  We put the actual user ISR address in '_ISR_vector_table'.  This will
        *  be used by the _ISR_Handler so the user gets control.
        */
    
        _ISR_Vector_table[ real_vector ] = new_handler;
    }
    View Code
    /*
     *  The following declares the Vector Table.  Application
     *  interrupt service routines are vectored by the ISR Handler via this table.
     */
    
    SCORE_EXTERN ISR_Handler_entry *_ISR_Vector_table;

    cpu.c cpukitscorecpusparc 9248 2003/9/5 81

    /*PAGE
     *
     *  _CPU_ISR_install_raw_handler
     *
     *  This routine installs the specified handler as a "raw" non-executive
     *  supported trap handler (a.k.a. interrupt service routine).
     *
     *  Input Parameters:
     *    vector      - trap table entry number plus synchronous 
     *                    vs. asynchronous information
     *    new_handler - address of the handler to be installed
     *    old_handler - pointer to an address of the handler previously installed
     *
     *  Output Parameters: NONE
     *    *new_handler - address of the handler previously installed
     * 
     *  NOTE: 
     *
     *  On the SPARC, there are really only 256 vectors.  However, the executive
     *  has no easy, fast, reliable way to determine which traps are synchronous
     *  and which are asynchronous.  By default, synchronous traps return to the
     *  instruction which caused the interrupt.  So if you install a software
     *  trap handler as an executive interrupt handler (which is desirable since
     *  RTEMS takes care of window and register issues), then the executive needs
     *  to know that the return address is to the trap rather than the instruction
     *  following the trap.
     *
     *  So vectors 0 through 255 are treated as regular asynchronous traps which
     *  provide the "correct" return address.  Vectors 256 through 512 are assumed
     *  by the executive to be synchronous and to require that the return address
     *  be fudged.
     *
     *  If you use this mechanism to install a trap handler which must reexecute
     *  the instruction which caused the trap, then it should be installed as
     *  an asynchronous trap.  This will avoid the executive changing the return
     *  address.
     */
     
    void _CPU_ISR_install_raw_handler(
      unsigned32  vector,
      proc_ptr    new_handler,
      proc_ptr   *old_handler
    )
    {
      unsigned32             real_vector;
      CPU_Trap_table_entry  *tbr;
      CPU_Trap_table_entry  *slot;
      unsigned32             u32_tbr;
      unsigned32             u32_handler;
    
      /*
       *  Get the "real" trap number for this vector ignoring the synchronous
       *  versus asynchronous indicator included with our vector numbers.
       */
    
      real_vector = SPARC_REAL_TRAP_NUMBER( vector );
    
      /*
       *  Get the current base address of the trap table and calculate a pointer
       *  to the slot we are interested in.
       */
    
      sparc_get_tbr( u32_tbr );
    
      u32_tbr &= 0xfffff000;
    
      tbr = (CPU_Trap_table_entry *) u32_tbr;
    
      slot = &tbr[ real_vector ];
    
      /*
       *  Get the address of the old_handler from the trap table.
       *
       *  NOTE: The old_handler returned will be bogus if it does not follow
       *        the RTEMS model.
       */
    
    #define HIGH_BITS_MASK   0xFFFFFC00
    #define HIGH_BITS_SHIFT  10
    #define LOW_BITS_MASK    0x000003FF
    
      if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
        u32_handler = 
          ((slot->sethi_of_handler_to_l4 & HIGH_BITS_MASK) << HIGH_BITS_SHIFT) |
          (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
        *old_handler = (proc_ptr) u32_handler;
      } else
        *old_handler = 0;
    
      /*
       *  Copy the template to the slot and then fix it.
       */
    
      *slot = _CPU_Trap_slot_template;
    
      u32_handler = (unsigned32) new_handler;
    
      slot->mov_vector_l3 |= vector;
      slot->sethi_of_handler_to_l4 |= 
        (u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
      slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);
    
      /* need to flush icache after this !!! */
    
      rtems_cache_invalidate_entire_instruction();
    
    }
    View Code

    其中,每个中断在中断向量表中都占用4条指令,下面是rtems使用的模板,首先保存psr到l0,然后通过hi和lo跳转到handler地址,最后将vector放在l3(这是为什么?)

    const CPU_Trap_table_entry _CPU_Trap_slot_template = {
      0xa1480000,      /* mov   %psr, %l0           */
      0x29000000,      /* sethi %hi(_handler), %l4  */
      0x81c52000,      /* jmp   %l4 + %lo(_handler) */
      0xa6102000       /* mov   _vector, %l3        */
    };

    在_CPU_ISR_install_raw_handler时,首先获取tbr的地址,使用了如下方式,看不懂,怎么有冒号

    /*
     *  Get and set the TBR
     */
    
    #define sparc_get_tbr( _tbr ) 
      do { 
         (_tbr) = 0; /* to avoid unitialized warnings */ 
         asm volatile( "rd %%tbr, %0" :  "=r" (_tbr) : "0" (_tbr) ); 
      } while ( 0 )

    然后,根据vector获取中断向量表的slot。

    然后,获取old handler,获取时,判断一下第一条指令是否符合模板,若符合才获取。获取方法为将第2、3条指令的跳转地址拼接起来。

    然后,将slot对应的4条指令刷为模板,然后,将跳转地址更新为new handler。

    该目录下,放着sparc CPU相关的东西,cpukitscorecpusparc temsscore。

  • 相关阅读:
    vue-router过渡动画
    vue-router重定向
    vue-router url传值
    vue-router多个组件模板放入同一个页面中
    vue-router参数
    vue-router子路由
    vue-router入门
    easyui中parser的简单用法
    webpost中常用的ContentType
    ASP.NET MVC 表单提交多层子级实体集合数据到控制器中
  • 原文地址:https://www.cnblogs.com/yanhc/p/12562486.html
Copyright © 2011-2022 走看看