zoukankan      html  css  js  c++  java
  • Ubuntu14.04 64位配置Caffe 教程(基于CUDA7.5)

      深度学习是研究计算机视觉的重要工具,尤其在图像分类与识别等领域有着划时代的意义。现在有很多深度学习框架,Caffe是比较常用的一个。本文讲述了Ubuntu 14.04(64位)系统下配置Caffe的基本步骤,参考了Caffe的官方网站   http://caffe.berkeleyvision.org/

    一、系统环境配置

    1.1 首先安装一般会用到的一些依赖项。打开Ubuntu系统的终端,输入以下命令:  

      sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

      sudo apt-get install --no-install-recommends libboost-all-dev

     

    1.2 下载并安装CUDA

      我使用的是CUDA 7.5,下载地址 https://developer.nvidia.com/cuda-downloads

      选择合适的版本,下载下来即可。按照图中的设置,下载到的是cuda_7.5.18_linux.run,默认下载路径是~/Downloads,在终端中输入: 

      cd ~/Downloads

      sudo sh cuda_7.5.18_linux.run 

      运行后会有一大段文字要让你浏览,终端左下角有进度显示,当前应为0%,没必要看,直接按Ctrl+C 跳过,之后要输入“accept”。在下边就是要你选择装各个组件。第一个显卡驱动不要装,剩下的可以都装上。注意,也不要自己另外装NVIDIA显卡的官方驱动,可能会产生系统启动循环登录不进去的情况。我当时就是因为装了最新版官方驱动,导致循环登录不进去,尝试了网络上各路大神给出的方法,均不奏效。最后放弃了,还是使用自带的开源显卡驱动好了。 

    --------------------------------------------------------------------

      但是即使这样可能会出现一些特殊情况。比如使用了自带的开源驱动,在编译完成caffe后,运行使用GPU的测试,会提示Error: CUDA driver version is insufficient for CUDA runtime version 。这表示显卡驱动没装对。这时只能不使用GPU,仅仅使用CPU了。当然如果非要使用GPU,只能安装合适的显卡驱动。正如前文所说,安装了最新的NVIDIA显卡驱动反而造成Ubuntu登录出现问题,那么应该装哪个驱动呢?

      打开System Settings ——> Software & Updates——> Additional Drivers

     

      我的显卡是GTX 760,列表中显示驱动中较新的是352.63版本。于是,我们可以从NVIDIA官网下载这个版本的显卡驱动。根据自己的显卡和系统来下载对应的驱动,我的下载后是NVIDIA-Linux-x86_64-352.63.run。 (一种更简单的方法是直接选中列表中的驱动版本,点击右下角的“Apply Changes”)

      安装方法:

      (1)先关闭桌面系统,终端输入:

       sudo service lightdm stop

      (2)然后按Ctrl + Alt +F1进入控制台,输入帐号和密码。cd到显卡驱动所在目录,然后执行:

       sudo  sh NVIDIA-Linux-x86_64-352.63.run

      按照指令一步步安装完即可。

      (3)中间可能会要求禁用自带开源驱动并重启计算机。重启后需要重复之前的步骤,然后一路确认就可以了。安装完成后,输入命令:

       sudo service lightdm start

      即可返回桌面系统。

    --------------------------------------------------------------------

      安装完CUDA后,需要在用户环境变量中加入两个路径。在终端中输入

      gedit  ~/.bashrc

      在打开的文件末尾添加下面两行:

      export PATH=/usr/local/cuda-7.5/bin:$PATH
      export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH

      然后保存并退出。

    1.3 安装BLAS

      终端中输入以下命令: 

      sudo apt-get install libatlas-base-dev

    1.4 安装Python(可选的)

      如果需要使用内置的Python,就需要运行下面的命令,这样在生成pycaffe接口时候才能有Python头文件:

      sudo apt-get install the python-dev 

    1.5 剩下的一些依赖 

      sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

     

    二、Caffe的安装和编译

     

    2.1安装Caffe

      我们使用git来获取Caffe,如果之前没有安装git,需要手动安装

      sudo apt-get install git 

      git clone https://github.com/BVLC/caffe/

     

    2.2 配置Caffe 

      进入caffe的根目录。我的caffe下载后在主目录下,所以在终端输入:

      cd ~/caffe

      然后创建一个配置文件。由于下载后的caffe目录中自带一个Makefile.config.example文件,所以只需要将该文件复制一份,并且命名为Makefile.config即可。所以可以使用下面的命令:  

      cp Makefile.config.example Makefile.config

     

      关于Makefile.config的一些说明如下:

      (1)使用CPU&GPU加速的Caffe,不需要修改现有配置;

      (2)使用NVIDIA的cuDNN软件加速的Caffe,则需要取消 “USE_CUDNN := 1”之前的注释符号。需要指出的是,cuDNN并不是一定会比Caffe的GPU加速快。

      (3)仅使用CPU的Caffe,取消 “CPU_ONLY := 1”前面的注释。

    2.3 编译Caffe

      我们使用CMake来编译Caffe,如果之前没有安装CMake,需要手动安装 

      sudo apt-get install cmake

     

      然后一次执行以下命令(如果遇到执行权限问题,在命令前加上 sudo) 

      mkdir build

      cd build

      cmake ..

      make all

      make install

      sudo make runtest

     

      至此,已经成功安装了Caffe。可以在一些数据集上进行一些测试了。

     

    三、使用Caffe

     

    3.1 准备MNIST 数据集

      首先准备数据集。我们需要从MNIST网站上下载数据并转换格式。为了简单,可以直接执行下面的命令: 

      cd  ~/caffe

      ./data/mnist/get_mnist.sh

      ./examples/mnist/create_mnist.sh

     

      运行后,在caffe/examples/mnist下会生成mnist_train_lmdb和 mnist_test_lmdb两个文件夹。

     

    3.2 执行结果

      终端输入以下命令(当前工作目录仍然是~/caffe): 

      ./examples/mnist/train_lenet.sh

     

      运行这句命令,最后训练成功结果如图。

  • 相关阅读:
    文件比较运算符
    中山慧海人才市场9月份 现场招聘会预告
    80后智能科技公司诚聘业务人员
    元豪路灯厂诚聘
    对Discuz的简单认识
    discuz阅读权限的设置作用
    个人对织梦系统的认识
    awvs的用法
    cain使用方法
    CCNA笔记(1)
  • 原文地址:https://www.cnblogs.com/yanhuiqingkong/p/7770093.html
Copyright © 2011-2022 走看看