zoukankan      html  css  js  c++  java
  • 【笔记】机器学习

    3.1 configuration
    3.2 寻找最优网络参数

    代码示例:

    # 1.Step 1
    model = Sequential()
    model.add(Dense(input_dim=28*28, output_dim=500)) # Dense是全连接
    model.add(Activation('sigmoid'))
    model.add(Dense(output_dim=500))
    model.add(Activation('sigmoid'))
    model.add(Dense(output_dim=10))
    model.add(Activation('softmax'))
    
    # Step 2
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    
    # Step 3
    model.fit(x_train, y_train, batch_size=100, nb_epoch=20)
    
    # 模型保存
    #case1:测试集正确率
    score = model.evaluate(x_test,y_test)
    print("Total loss on Testing Set:", score[0])
    print("Accuracy of Testing Set:", score[1])
    
    #case2:模型预测
    result = model.predict(x_test)
    

    Keras 2.0 代码类似

    # 创建网络
    model=Sequential()
    model.add(Dense(input_dim=28*28,units=500,activation='relu'))
    model.add(Dense(units=500,activation='relu'))
    model.add(Dense(units=10,activation='softmax'))
    
    # 配置
    model.compile(loss='categorical crossentropy',optimizer='adam',metrics=['accuracy'])
    
    # 选择最好的方程
    model.fit(x_train,y_train,batch_size=100,epochs=20)
    
    # 使用模型
    score = model.evaluate(x_test,y_test)
    print('Total loss on Testiong Set : ',score[0])
    print('Accuracy of Testiong Set : ',score[1])
    
    # 上线后预测
    result = model.predict(x_test)
    

    x_train, y_train解释

    小批量梯度下降,速度更快的原因是因为可以并行计算。

    完整的Keras演示:

    import numpy as np
    from keras.models import Sequential
    from keras.layers.core import Dense,Dropout,Activation
    from keras.optimizers import SGD,Adam
    from keras.utils import np_utils
    from keras.datasets import mnist
    
    def load_data():
        (x_train,y_train),(x_test,y_test)=mnist.load_data()
        number=10000
        x_train=x_train[0:number]
        y_train=y_train[0:number]
        x_train=x_train.reshape(number,28*28)
        x_test=x_test.reshape(x_test.shape[0],28*28)
        x_train=x_train.astype('float32')
        x_test=x_test.astype('float32')
        y_train=np_utils.to_categorical(y_train,10)
        y_test=np_utils.to_categorical(y_test,10)
        x_train=x_train
        x_test=x_test
        x_train=x_train/255
        x_test=x_test/255
        return (x_train,y_train),(x_test,y_test)
    
    (x_train,y_train),(x_test,y_test)=load_data()
    
    model=Sequential()
    model.add(Dense(input_dim=28*28,units=633,activation='sigmoid'))
    model.add(Dense(units=633,activation='sigmoid'))
    model.add(Dense(units=633,activation='sigmoid'))
    model.add(Dense(units=10,activation='softmax'))
    
    model.compile(loss='mse',optimizer=SGD(lr=0.1),metrics=['accuracy'])
    
    model.fit(x_train,y_train,batch_size=100,epochs=20)
    
    result= model.evaluate(x_test,y_test)
    
    print('TEST ACC:',result[1])
    

    运行结果:

    Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
    11493376/11490434 [==============================] - 21s 2us/step
    
    Epoch 1/20
    10000/10000 [==============================] - 3s 342us/step - loss: 0.0905 - acc: 0.1042
    Epoch 2/20
    10000/10000 [==============================] - 3s 292us/step - loss: 0.0900 - acc: 0.1043
    Epoch 3/20
    10000/10000 [==============================] - 3s 278us/step - loss: 0.0900 - acc: 0.1096
    Epoch 4/20
    10000/10000 [==============================] - 3s 284us/step - loss: 0.0900 - acc: 0.1133
    Epoch 5/20
    10000/10000 [==============================] - 3s 290us/step - loss: 0.0900 - acc: 0.1105
    Epoch 6/20
    10000/10000 [==============================] - 3s 286us/step - loss: 0.0900 - acc: 0.1120
    Epoch 7/20
    10000/10000 [==============================] - 3s 316us/step - loss: 0.0900 - acc: 0.1098
    Epoch 8/20
    10000/10000 [==============================] - 3s 306us/step - loss: 0.0900 - acc: 0.1117
    Epoch 9/20
    10000/10000 [==============================] - 3s 294us/step - loss: 0.0900 - acc: 0.1102
    Epoch 10/20
    10000/10000 [==============================] - 3s 296us/step - loss: 0.0899 - acc: 0.1129
    Epoch 11/20
    10000/10000 [==============================] - 3s 334us/step - loss: 0.0899 - acc: 0.1153
    Epoch 12/20
    10000/10000 [==============================] - 3s 307us/step - loss: 0.0899 - acc: 0.1141
    Epoch 13/20
    10000/10000 [==============================] - 4s 351us/step - loss: 0.0899 - acc: 0.1137 0s - loss: 0.089
    Epoch 14/20
    10000/10000 [==============================] - 3s 321us/step - loss: 0.0899 - acc: 0.1157
    Epoch 15/20
    10000/10000 [==============================] - 3s 302us/step - loss: 0.0899 - acc: 0.1156
    Epoch 16/20
    10000/10000 [==============================] - 3s 323us/step - loss: 0.0899 - acc: 0.1159 1s -
    Epoch 17/20
    10000/10000 [==============================] - 3s 331us/step - loss: 0.0899 - acc: 0.1141
    Epoch 18/20
    10000/10000 [==============================] - 3s 299us/step - loss: 0.0899 - acc: 0.1234
    Epoch 19/20
    10000/10000 [==============================] - 3s 316us/step - loss: 0.0899 - acc: 0.1143
    Epoch 20/20
    10000/10000 [==============================] - 3s 337us/step - loss: 0.0899 - acc: 0.1236
    10000/10000 [==============================] - 2s 246us/step
    TEST ACC: 0.1028
    

    可以调一下units的参数值,可以再多加几层,尝试一下效果并不是很好,之后章节会对这个代码进行优化。

  • 相关阅读:
    【0726 | Day 2】编程语言分类/主流编程语言介绍/网络的瓶颈效应
    【0725 | Day 1】计算机编程/计算机组成原理/计算机操作系统
    windows下vue-cli及webpack 构建网站(一)环境安装
    HBuilder 做移动端app流程
    vuejs 学习旅程之 vue-resource
    vuejs 学习旅程一
    身心合一
    td 内容自动换行 table表格td设置宽度后文字太多自动换行
    PhpStorm 2017汉化补丁 2017.1 免费中文版
    PHPStorm2017.1.3永久激活方法之本地破解激活
  • 原文地址:https://www.cnblogs.com/yanqiang/p/11382214.html
Copyright © 2011-2022 走看看