zoukankan      html  css  js  c++  java
  • 【笔记】机器学习

    1. Keras Demo2
    前节的Keras Demo代码:

    import numpy as np
    from keras.models import Sequential
    from keras.layers.core import Dense,Dropout,Activation
    from keras.optimizers import SGD,Adam
    from keras.utils import np_utils
    from keras.datasets import mnist
    
    def load_data():
        (x_train,y_train),(x_test,y_test)=mnist.load_data()
        number=10000
        x_train=x_train[0:number]
        y_train=y_train[0:number]
        x_train=x_train.reshape(number,28*28)
        x_test=x_test.reshape(x_test.shape[0],28*28)
        x_train=x_train.astype('float32')
        x_test=x_test.astype('float32')
        y_train=np_utils.to_categorical(y_train,10)
        y_test=np_utils.to_categorical(y_test,10)
        x_train=x_train
        x_test=x_test
        x_train=x_train/255
        x_test=x_test/255
        return (x_train,y_train),(x_test,y_test)
    
    (x_train,y_train),(x_test,y_test)=load_data()
    
    model=Sequential()
    model.add(Dense(input_dim=28*28,units=633,activation='sigmoid'))
    model.add(Dense(units=633,activation='sigmoid'))
    model.add(Dense(units=633,activation='sigmoid'))
    model.add(Dense(units=10,activation='softmax'))
    
    model.compile(loss='mse',optimizer=SGD(lr=0.1),metrics=['accuracy'])
    
    model.fit(x_train,y_train,batch_size=100,epochs=20)
    
    result= model.evaluate(x_test,y_test)
    
    print('TEST ACC:',result[1])
    

    Keras Demo中的结果不是很好,看一下在Training Data上的结果:

    result= model.evaluate(x_test,y_test)
    result2 = model.evaluate(x_train,y_train,batch_size=10000)
    
    print('TEST ACC:',result[1])
    print('TRAIN ACC:',result2[1])
    

    结果如下:

    TEST ACC: 0.1135
    TRAIN ACC: 0.1128000020980835
    

    说明在Training Data上结果也不好,接下来开始调参:

    loss function
    分类问题mse不适合,将loss mse function 改为categorical_crossentropy

    model.compile(loss='categorical_crossentropy',optimizer=SGD(lr=0.1),metrics=['accuracy'])
    

    结果如下:

    TEST ACC: 0.8488
    TRAIN ACC: 0.8611000180244446
    

    batch_size
    batch_size从100改为10000,得到的结果不好。

    model.fit(x_train,y_train,batch_size=10000,epochs=20)
    

    结果如下:

    TEST ACC: 0.101
    TRAIN ACC: 0.10320000350475311
    

    改为1,无法并行,速度变得很慢。

    model.fit(x_train,y_train,batch_size=1,epochs=20)
    

    deep layer
    加10层,没有train起来。

    for _ in range(10):
        model.add(Dense(units=689,activation='sigmoid'))
    

    结果如下:

    TEST ACC: 0.101
    TRAIN ACC: 0.10320000350475311
    

    activation functon
    把sigmoid都改为relu,发现现在train的accuracy就爬起来了,接近100%,在Test Data上也表现很好。

    结果如下:

    TEST ACC: 0.9556
    TRAIN ACC: 0.9998000264167786
    

    normalize
    如果不进行normalize,把255去掉,得到的结果又不好了,这些细节也很重要。

    # x_train=x_train/255
    # x_test=x_test/255
    

    结果如下:

    TEST ACC: 0.098
    TRAIN ACC: 0.10010000318288803
    

    optimizer
    把SGD(lr=0.1)改为Adam,然后再跑一次,用adam的时候最后收敛的地方差不多,但是上升的速度变快了。

    结果如下:

    TEST ACC: 0.9667
    TRAIN ACC: 1.0
    

    Random noise
    加上noise之后,结果不好,overfitting了。

    x_test=np.random.normal(x_test)
    

    结果如下:

    TEST ACC: 0.4986
    TRAIN ACC: 0.9991000294685364
    

    dropout
    dropout 加在每个hidden layer之后,dropout加入之后,train的效果会变差,然而test的正确率提升了。

    model.add(Dense(input_dim=28*28,units=689,activation='relu'))
    model.add(Dropout(0.7))
    model.add(Dense(units=689,activation='relu'))
    model.add(Dropout(0.7))
    model.add(Dense(units=689,activation='relu'))
    model.add(Dropout(0.7))
    model.add(Dense(units=10,activation='softmax'))
    

    结果如下:

    TEST ACC: 0.594
    TRAIN ACC: 0.9894000291824341
    

    2. FizzBuzz

    题目描述:
    给你100以内的数. 如果这个数被3整除,打印fizz.
    如果这个数被5整除,打印buzz.
    如果这个数能同时被3和5整除,打印fizz buzz.

    FizzBuzz是一个很有意思的题目,如果用深度学习的方法来做的话,可以用如下代码实现。

    数据准备:
    对数字101到1000都做了数据标注,即训练数据xtrain.shape=(900,10),
    每一个数字都是用二进位来表示,第一个数字是101,用二进位来表示即为[1,0,1,0,0,1,1,0,0,0],
    每一位表示(2^{n-1})(n)表示左数第几位。现在一共有四个case,[一般,Fizz,Buzz,Fizz Buzz],所以y_train.shape=(900,10),对应的维度用1表示,其他都为0。

    from keras.layers.normalization import BatchNormalization
    from keras.models import Sequential
    from keras.layers.core import Dense,Dropout,Activation
    from keras.optimizers import SGD,Adam
    import numpy as np
    
    def fizzbuzz(start, end):
        x_train, y_train=[],[]
        for i in range(start, end+1):
            num = i
            tmp = [0]*10
            j = 0
            while num:
                tmp[j] = num & 1
                num = num >> 1
                j += 1        
            x_train.append(tmp)
            if i % 3 == 0 and i % 5 == 0:
                y_train.append([0,0,0,1])
            elif i % 3 == 0:
                y_train.append([0,1,0,0])
            elif i % 5 == 0:
                y_train.append([0,0,1,0])
            else:
                y_train.append([1,0,0,0])
        return np.array(x_train), np.array(y_train)
    
    x_train,y_train = fizzbuzz(101, 1000) #打标记函数
    x_test,y_test = fizzbuzz(1, 100)
    
    model = Sequential()
    model.add(Dense(input_dim=10, output_dim=100))
    model.add(Activation('relu'))
    model.add(Dense(output_dim=4))
    model.add(Activation('softmax'))
    
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    
    model.fit(x_train, y_train, batch_size=20, nb_epoch=100)
    
    result = model.evaluate(x_test, y_test, batch_size=1000)
    
    print('Acc:',result[1])
    

    最后的结果不是100%,所以我们将hidden neure从100改为1000,结果就是100%了。

    model.add(Dense(input_dim=10, output_dim=1000))
    
  • 相关阅读:
    ./sample_mnist: error while loading shared libraries: libnvinfer.so.4: cannot open shared object file: No such file or directory
    Unable to correct problems, you have held broken packages
    `TypeError: torch.mm received an invalid combination of arguments
    error: ‘module’ object has no attribute ‘_rebuild_tensor_v2’
    cafee编译错误几个总结
    对yolo与fasterrcnn anchors的理解
    msf提权常用命令
    解析漏洞总结
    webshell方法总结
    XSS之会话劫持
  • 原文地址:https://www.cnblogs.com/yanqiang/p/11400510.html
Copyright © 2011-2022 走看看