zoukankan      html  css  js  c++  java
  • 卷积神经网络CNN【1】-简介

    卷积神经网络真的挺难靠文字讲清楚的,一般需要大量图片来辅助理解,时间关系,我就不仔细讲了,这里记录一下大致的算法和注意点。

    首先我概括一下卷积神经网络

    卷积神经网络是通过卷积核进行特征提取,从一个样本身上利用很多个卷积核提取这个样本的很多特征,通过池化进行降维,然后利用普通的全连接神经网络进行训练。

    从网络结构上讲,卷积神经网络是把网络从扁平拉伸成窄厚,然后重复这个过程,最后接上全连接网络和softmax。

    接着我讲几个注意点

    卷积层和池化层

    卷积层的核心是卷积核,我在手写数字识别实例中已经讲的比较清楚,不再赘述。

    池化层的作用不只是降维,它使得模型对局部位移或者微小位置偏差具有更好的鲁棒性

    输入有微小差别,输出相同

     padding

    在卷积层和池化层,padding的意义是不同的。

    卷积层

    padding取same时,需要对原样本进行边界填充,以保证卷积后的样本和原样本大小一样,

    padding取valid时,不需要填充,卷积后变小。

    池化层

    padding取same时,可能会给平面进行边界填充,但不是保证大小一致,是在池化野扫描时,假如扫描到边界时,剩余的格数小于池化野的大小时,对边界填充,使得剩余格数等于池化野大小,否则不需要填充。

    padding取valid时,不填充,假如扫描到边界时,剩余格数小于池化野的大小,就放弃剩余的格数

    最后接两张关键图结束

    
    
    
  • 相关阅读:
    get和post区别
    cookie和session的区别
    节流和防抖
    eval()
    三次握手和四次挥手
    HTTP状态码
    AMD规范与CMD规范的区别?
    深拷贝和浅拷贝
    逆人性的人类出现,正常合理竞争该何去何从
    TestNG并发执行测试总结
  • 原文地址:https://www.cnblogs.com/yanshw/p/10425773.html
Copyright © 2011-2022 走看看