zoukankan      html  css  js  c++  java
  • Amber学习第七天:蛋白分子动力学的模拟

    1.系统的准备:

    假设有一个PDB文件含有500多个残基并且构成两条链。首先修饰PDB文件:除去remarks, connectivity data 和 HETATM lines的数据(不包括晶体水),然后增加TER标签在蛋白链间和改变一些氨基酸的名字如:HIS to HIE, HID or HIP;和CYS。

    tleap -s -f leaprc.ff99SB    (告诉tleap将载入ff99SB力场,接下来载入蛋白)

    > mol = loadpdb protein.pdb     (这将增加氢到结构中)

    > solvatebox mol TIP3PBOX 12.0  (加12埃的水盒子)

    > charge mol                     (检查分子的电荷)

    > addions mol Na+ 0           (增加抗衡离子来中性化系统)

    > saveamberparm mol protein.prmtop protein.inpcrd    (创建prmtop and inpcrd文件)

    > quit

    protein.prmtop文件含有分子拓扑性,力场参数,原子和残基名字。rotein.inpcrd文件含有起始的坐标文件,用这两个文件产生PDB文件。

    ambpdb -p protein.prmtop < protein.inpcrd > protein_solvated.pdb

    2.能量最小化:

    将运行两步最小化:第一步固定蛋白最小化水分子位置,第二步最小化整个系统。当运行sander时,应该用控制文件:min1.inmin2.in

    min1.in

    energy minimization stage 1
     &cntrl
      imin=1, maxcyc=5000, ncyc=2500,
      cut=10.0, ntb=1,
      ntc=1, ntf=1,
      ntpr=10,
      ntr=1,
      restraintmask=':1-500',
      restraint_wt=2.0
     /

    Information in the input file:
    imin=1  perform minimization
    maxcyc=5000  maximum number of minimization cycles
    ncyc=2500  method of minimization will be switched from steepest descent to conjugate gradient after ncyc cycles
    cut=10.0  specify the nonbonded cutoff, in Angstroms
    ntb=1  periodic boundary, constant volume
    ntc=1  SHAKE is not performed (for better energy convergence)
    ntf=1  force evaluation, complete interaction is calculated
    ntpr=10  every ntpr steps energy information will be printed in human-readable form to mdout file
    ntr=1  flag for restraining specified atoms using harmonic potential
    restraintmask=':1-500'  string that specifies the restrained residues
    restraint_wt=2.0  the weight (in kcal/mol-A^2) for the positional restraints

    运行:sander -O -i min1.in -p protein.prmtop -c protein.inpcrd -o protein_min1.out -r protein_min1.rst -ref protein.inpcrd

    mdin  control data for the min/md run ;prmtop  molecular topology, force field, atom and residue names ;inpcrd  initial coordinates
    mdout  user readable state info and diagnostics ;rstrt  final coordinates and velocities ;refc  reference coords for position restraints

    min2.in:

    energy minimization stage 2
     &cntrl
      imin=1, maxcyc=10000, ncyc=5000,
      cut=10.0, ntb=1,
      ntc=1, ntf=1,
      ntpr=10,
     /

    运行:sander -O -i min2.in -p protein.prmtop -c protein_min1.rst -o protein_min2.out -r protein_min2.rst

    3.加热

    给系统加热从0K到300K并在体积不变下带有位置限制运行50ps动力学。

    heat.in

    heating
     &cntrl
      imin=0,irest=0,ntx=1,
      nstlim=25000,dt=0.002,
      ntc=2,ntf=2,
      cut=10.0, ntb=1,
      ntpr=500, ntwx=500,
      ntt=3, gamma_ln=2.0,
      tempi=0.0, temp0=300.0,
      ntr=1, restraintmask=':1-500',
      restraint_wt=1.0,
      nmropt=1
     /
     &wt TYPE='TEMP0', istep1=0, istep2=25000,
      value1=0.1, value2=300.0, /
     &wt TYPE='END' /

    imin=0  do molecular dynamics ;irest=0  flag to restart the run, no effect ;ntx=1  no initial velocity information ;nstlim=25000  number of MD-steps to be performed
    dt=0.002  time step (psec) ;ntc=2  flag for SHAKE, bonds involving hydrogen are constrained ;ntf=2  force evaluation, bond interactions involving H-atoms omitted
    ntwx=500  every ntwx steps the coordinates will be written to mdcrd file ;ntt=3  use Langevin thermostat ;gamma_ln=2.0  collision frequency in temperature regulation
    tempi=0.0  initial temperature ;temp0=300.0  reference temperature ;nmropt=1  varying conditions ;TYPE='TEMP0'  varies the target temperature
    istep1=0, istep2=25000  change is applied over steps istep1 through istep2value1=0.1, value2=300.0  values of the change corresponding to istep1 and istep2, respectively

    运行:sander -O -i heat.in -p protein.prmtop -c protein_min2.rst -o protein_heat.out -r protein_heat.rst -x protein_heat.mdcrd -ref protein_min2.rst

    4.平衡

    为了平衡系统,将运行500ps的分子动力学在常压下没有位置的限制

    equil.in

    equilibration
     &cntrl
      imin=0, irest=1, ntx=5,
      nstlim=250000, dt=0.002,
      ntc=2, ntf=2,
      cut=10.0, ntb=2, ntp=1, taup=2.0,
      ntpr=500, ntwx=500, ntwr=5000,
      ntt=3, gamma_ln=2.0,
      temp0=300.0,
     /

    Information in the input file:
    irest=1, ntx=5  restart calculation, requires velocities in coordinate input file ;ntb=2  periodic boundary, constant pressure ;ntp=1  flag for constant pressure dynamics, md with isotropic position scaling
    taup=2.0  pressure relaxation time (in ps) ;ntwr=5000  every ntwr steps during dynamics, the restrt file will be written, ensuring that recovery from a crash will not be so painful

    运行:sander -O -i equil.in -p protein.prmtop -c protein_heat.rst -o protein_equil.out -r protein_equil.rst -x protein_equil.mdcrd

    5.Production dynamics

    在常压下运行10ns动力学。获得的轨迹被用于分析

    prod.in:

    production dynamics
     &cntrl
      imin=0, irest=1, ntx=5,
      nstlim=5000000, dt=0.002,
      ntc=2, ntf=2,
      cut=10.0, ntb=2, ntp=1, taup=2.0,
      ntpr=1000, ntwx=1000, ntwr=50000,
      ntt=3, gamma_ln=2.0,
      temp0=300.0,
     /

    prod.in文件于equil.in的差异主要在于nstlim, ntpr, ntwx, and ntwr值的不同

    当运行five million MD-steps时,他是合理的平行的运行:

    mpirun -np 32 sander.MPI -O -i prod.in -p protein.prmtop -c protein_equil.rst -o protein_prod.out -r protein_prod.rst -x protein_prod.mdcrd

    http://enzyme.fbb.msu.ru/Tutorials/

  • 相关阅读:
    个人作业——软件工程实践总结&个人技术博客
    个人作业——软件评测
    结对第二次作业——某次疫情统计可视化的实现
    结对第一次—疫情统计可视化(原型设计)
    软工实践寒假作业(2/2)
    软工实践寒假作业(1/2)
    C#MD5判断文件是否修改
    Socket抓包工具WireShark使用
    C#窗体最大化最小化等比例缩放
    QMessageBox
  • 原文地址:https://www.cnblogs.com/yanzhi123/p/2578409.html
Copyright © 2011-2022 走看看