zoukankan      html  css  js  c++  java
  • 多线程锁--怎么理解Condition

    在java.util.concurrent包中,有两个很特殊的工具类,Condition和ReentrantLock,使用过的人都知道,ReentrantLock(重入锁)是jdk的concurrent包提供的一种独占锁的实现。它继承自Dong Lea的 AbstractQueuedSynchronizer(同步器),确切的说是ReentrantLock的一个内部类继承了AbstractQueuedSynchronizer,ReentrantLock只不过是代理了该类的一些方法,可能有人会问为什么要使用内部类在包装一层? 我想是安全的关系,因为AbstractQueuedSynchronizer中有很多方法,还实现了共享锁,Condition(稍候再细说)等功能,如果直接使ReentrantLock继承它,则很容易出现AbstractQueuedSynchronizer中的API被无用的情况。

    言归正传,今天,我们讨论下Condition工具类的实现。

    ReentrantLock和Condition的使用方式通常是这样的:

    C1

    运行后,结果如下:

    C2

    可以看到,

    Condition的执行方式,是当在线程1中调用await方法后,线程1将释放锁,并且将自己沉睡,等待唤醒,

    线程2获取到锁后,开始做事,完毕后,调用Condition的signal方法,唤醒线程1,线程1恢复执行。

    以上说明Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备( signal 或者 signalAll方法被带调用)时 ,这些等待线程才会被唤醒,从而重新争夺锁。

    那,它是怎么实现的呢?

    首先还是要明白,reentrantLock.newCondition() 返回的是Condition的一个实现,该类在AbstractQueuedSynchronizer中被实现,叫做newCondition()

    C3

    它可以访问AbstractQueuedSynchronizer中的方法和其余内部类( AbstractQueuedSynchronizer是个抽象类,至于他怎么能访问,这里有个很奇妙的点,后面我专门用demo说明 )

    现在,我们一起来看下Condition类的实现,还是从上面的demo入手,

    为了方便书写,我将AbstractQueuedSynchronizer缩写为AQS

    当await被调用时,代码如下:

    public final void await() throws InterruptedException {
    if (Thread.interrupted())
     throw new InterruptedException();
     Node node = addConditionWaiter(); //将当前线程包装下后,
                                       //添加到Condition自己维护的一个链表中。
    int savedState = fullyRelease(node);//释放当前线程占有的锁,从demo中看到,
                                           //调用await前,当前线程是占有锁的
     
    int interruptMode = 0;
     while (!isOnSyncQueue(node)) {//释放完毕后,遍历AQS的队列,看当前节点是否在队列中,
                               //不在 说明它还没有竞争锁的资格,所以继续将自己沉睡。
                                 //直到它被加入到队列中,聪明的你可能猜到了,
                                //没有错,在singal的时候加入不就可以了?
     LockSupport.park(this);
     if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
     break;
     }
    //被唤醒后,重新开始正式竞争锁,同样,如果竞争不到还是会将自己沉睡,等待唤醒重新开始竞争。
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
     interruptMode = REINTERRUPT;
     if (node.nextWaiter != null)
     unlinkCancelledWaiters();
     if (interruptMode != 0)
     reportInterruptAfterWait(interruptMode);
     }

    回到上面的demo,锁被释放后,线程1开始沉睡,这个时候线程因为线程1沉睡时,会唤醒AQS队列中的头结点,所所以线程2会开始竞争锁,并获取到,等待3秒后,线程2会调用signal方法,“发出”signal信号,signal方法如下:

    public final void signal() {
     if (!isHeldExclusively())
     throw new IllegalMonitorStateException();
     Node first = firstWaiter; //firstWaiter为condition自己维护的一个链表的头结点,
                              //取出第一个节点后开始唤醒操作
     if (first != null)
     doSignal(first);
     }

    说明下,其实Condition内部维护了等待队列的头结点和尾节点,该队列的作用是存放等待signal信号的线程,该线程被封装为Node节点后存放于此。

    C4

    关键的就在于此,我们知道AQS自己维护的队列是当前等待资源的队列,AQS会在资源被释放后,依次唤醒队列中从前到后的所有节点,使他们对应的线程恢复执行。直到队列为空。

    而Condition自己也维护了一个队列,该队列的作用是维护一个等待signal信号的队列,两个队列的作用是不同,事实上,每个线程也仅仅会同时存在以上两个队列中的一个,流程是这样的:

    1. 线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。

    2. 线程1调用await方法被调用时,该线程从AQS中移除,对应操作是锁的释放。

    3. 接着马上被加入到Condition的等待队列中,以为着该线程需要signal信号。

    4. 线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁,并被加入到AQS的等待队列中。

    5.  线程2调用signal方法,这个时候Condition的等待队列中只有线程1一个节点,于是它被取出来,并被加入到AQS的等待队列中。  注意,这个时候,线程并没有被唤醒。

    6. signal方法执行完毕,线程2调用reentrantLock.unLock()方法,释放锁。这个时候因为AQS中只有线程1,于是,AQS释放锁后按从头到尾的顺序唤醒线程时,线程1被唤醒,于是线程1回复执行。

    7. 直到释放所整个过程执行完毕。

    可以看到,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作。

    看到这里,signal方法的代码应该不难理解了。

    取出头结点,然后doSignal

    C5

    private void doSignal(Node first) {
     do {
     if ( (firstWaiter = first.nextWaiter) == null) //修改头结点,完成旧头结点的移出工作
     lastWaiter = null;
     first.nextWaiter = null;
     } while (!transferForSignal(first) &&//将老的头结点,加入到AQS的等待队列中
     (first = firstWaiter) != null);
     }
     
    final boolean transferForSignal(Node node) {
     /*
     * If cannot change waitStatus, the node has been cancelled.
     */
     if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
     return false;
     
    /*
     * Splice onto queue and try to set waitStatus of predecessor to
     * indicate that thread is (probably) waiting. If cancelled or
     * attempt to set waitStatus fails, wake up to resync (in which
     * case the waitStatus can be transiently and harmlessly wrong).
     */
     Node p = enq(node);
     int ws = p.waitStatus;
    //如果该结点的状态为cancel 或者修改waitStatus失败,则直接唤醒。
     if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
     LockSupport.unpark(node.thread);
     return true;
     }

    可以看到,正常情况 ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL) 这个判断是不会为true的,所以,不会在这个时候唤醒该线程。

    只有到发送signal信号的线程调用reentrantLock.unlock()后因为它已经被加到AQS的等待队列中,所以才会被唤醒。

    总结:

         本文从代码的角度说明了Condition的实现方式,其中,涉及到了AQS的很多操作,比如AQS的等待队列实现独占锁功能,不过,这不是本文讨论的重点,等有机会再将AQS的实现单独分享出来。

     
     
        
    0.00 avg. rating (0% score) - 0 votes

     program language permalink

    Post navigation

    7 thoughts on “怎么理解Condition”

      1. 信言说道:

        向楼主请教一个问题,如最后的流程所述:
        “1. 线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。”
        此时无线程争用锁,线程1会先tryAcquire一次,成功则无需入队。因此我认为此处线程1并未加入到AQS的等待队列中。

        “2. 线程1调用await方法被调用时,该线程从AQS中移除,对应操作是锁的释放。”
        我理解lock之后unlock之前都是在临界区内,此时调await直接释放锁(离开临界区)OK,但无需从AQS移除,因为移除是即将进入临界区那一刻的事情。

        “4. 线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁,并被加入到AQS的等待队列中。”
        同理,我认为最后一句加入到AQS队列有误。

        另外,楼主的代码中变量名最好改成thread1和thread2方便对号入座,谢谢!

        1. liuinsect说道:

          你好,根据你的描述,依次回复下你的问题:
          1. AQS中维护者唯一的一个队列,该队列支持两种模式:独占模式和共享模式,本文中提到的reentrantlock使用的是其独占模式,该队列描述了多线程环境下对锁资源的占用情况,其中,头结点即是表明占有该资源的线程。
          所以,如果线程1成功获取锁,则线程1会被包装成一个Node(AQS中的内部数据结构)加入到AQS的队列中,你所说的并未加入,是不准确的。
          2.调用await方法后,是会从AQS的该队列中移除该Node的,从我本文贴出的源码中可以看到,在await方法中有fullyRelease操作,这个操作会引起结点的移除。

          最后,再说明下,AQS只是维护了一个在多线程环境下对某个资源的占用情况,对外,可以理解成“临界区” 但在AQS内部来说,不过是检查在当前条件下是否可以获取资源这种操作的一种封装。所以,AQS的队列上挂了所有对该资源请求的线程,而AQS定义了头结点是表示占有该资源的线程(独占模式)。在共享模式下,则队列上的一系列结点都可以同时占有资源,对应于,唤醒的时候,这一些列线程都会被唤醒。

          1. 信言说道:

            感谢楼主的回复。
            我查了源码,ReentrantLock.lock()调了内部类Sync的抽象方法lock,后者有一个公平和另一个不公平的实现。以不公平的实现NonfairSync(默认)为例,lock方法源码为:

            final void lock() {
            if (compareAndSetState(0, 1))//Try immediate barge
            setExclusiveOwnerThread(Thread.currentThread());
            else//backing up to normal acquire on failure.
            acquire(1);
            }
            如果cas操作成功,直接进入临界区(执行lock后续的代码)否则走常规流程调acquire(),
            acquire源码为:

            public final void acquire(int arg) {
            if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
            }

            tryAcquire如果成功,返回true,if表达式短路就直接结束了。
            似乎没有源码能对应到包装成一个Node加入AQS队列?

            1. liuinsect说道:

              如果tryAcquire 成功了,没有必要增加到AQS的等待队列中了, 反之,如果增加不成功,进入到acquireQueued方法中去,则会将当先现线程增加到AQS的等待队列中去的。

          2. 信言说道:

            再看fullyRelease的源码(似乎没有出现结点从队列移除的代码):

            final long fullyRelease(Node node) {
            boolean failed = true;
            try {
            long savedState = getState();
            if (release(savedState)) {//调用release
            failed = false;
            return savedState;
            } else {
            throw new IllegalMonitorStateException();
            }
            } finally {
            if (failed)
            node.waitStatus = Node.CANCELLED;
            }
            }

            它调用了release:
            public final boolean release(long arg) {
            if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
            return true;
            }
            return false;
            }

            再调用了tryRelease,如果成功,唤醒AQS队列的头结点让它尝试进入临界区(因此我理解的AQS队列上的每个结点都代表了一个正等待进入临界区而被block的线程)

            而tryRelease纯粹是状态值的操作,也不涉及出队列:
            protected final boolean tryRelease(int releases) {
            int c = getState() – releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
            }

            1. liuinsect说道:

              unparkSuccessor 方法中有移除节点的方法:
              private void unparkSuccessor(Node node) {
              /*
              * If status is negative (i.e., possibly needing signal) try
              * to clear in anticipation of signalling. It is OK if this
              * fails or if status is changed by waiting thread.
              */
              int ws = node.waitStatus;
              if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) {
              s = null;
              for (Node t = tail; t != null && t != node; t = t.prev)
              if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }

  • 相关阅读:
    Linux命令发送Http的get或post请求(curl和wget两种方法)
    大数据面试题以及答案整理(一)
    大数据面试题及答案-汇总版
    Linux shell之打印输出
    Java开发中常见的危险信号(上)
    sencha touch笔记(5)——DataView组件(1)
    sencha touch(7)——list组件
    sencha touch笔记(6)——路由控制(1)
    [置顶] Android源码分析-点击事件派发机制
    UVa 10330 Power Transmission / 最大流
  • 原文地址:https://www.cnblogs.com/yaowen/p/6094921.html
Copyright © 2011-2022 走看看