左右手(直角)坐标系叉乘计算公式
右手坐标系下叉乘公式
设右手坐标系基为({vec{i},vec{j},vec{k}}),并满足以下条件:
[vec{i} imesvec{i} =vec{j} imesvec{j} =vec{k} imesvec{k} =vec{0}
]
[vec{i} imesvec{j}=-vec{j} imesvec{i} =vec{k}
]
[vec{k} imesvec{i} =-vec{i} imesvec{k} =vec{j}
]
[vec{j} imesvec{k} =-vec{k} imesvec{j} =vec{i}
]
![](https://img2020.cnblogs.com/blog/427145/202008/427145-20200825094058107-1505391122.png)
并设(vec{v_1},vec{v_2})如下:
[vec{v_1}=egin{pmatrix}vec{i} & vec{j} & vec{k}end{pmatrix}egin{pmatrix}x_1 \ y_1 \ z_1end{pmatrix}=x_1vec{i} + y_1vec{j} + z_1vec{k}
]
[vec{v_2}=egin{pmatrix}vec{i} & vec{j} & vec{k}end{pmatrix}egin{pmatrix}x_2 \ y_2 \ z_2end{pmatrix}=x_2vec{i} + y_2vec{j} + z_2vec{k}
]
则(vec{v_1} imes vec{v_2})为:
[vec{v_1} imes vec{v_2}
=(x_1vec{i} + y_1vec{j} + z_1vec{k}) imes(x_2vec{i} + y_2vec{j} + z_2vec{k})
]
[=egin{vmatrix}vec{j} imesvec{k} & vec{k} imesvec{i} & vec{i} imesvec{j} \ x_1 & y_1 & z_1 \ x_2 & y_2 & z_2end{vmatrix}
=egin{vmatrix}vec{i} & vec{j} & vec{k} \ x_1 & y_1 & z_1 \ x_2 & y_2 & z_2end{vmatrix}
]
左手坐标系下叉乘公式
设左手坐标系基为({vec{i},vec{j'},vec{k}}),其中(vec{j'}=-vec{j}),并满足以下条件:
[vec{i} imesvec{i} =vec{j'} imesvec{j'} =vec{k} imesvec{k} =vec{0}
]
[vec{i} imesvec{j'}=-vec{j'} imesvec{i} =-vec{k}
]
[vec{k} imesvec{i} =-vec{i} imesvec{k} =-vec{j'}
]
[vec{j'} imesvec{k} =-vec{k} imesvec{j'} =-vec{i}
]
并设(vec{v_1},vec{v_2})如下:
[vec{v_1}=egin{pmatrix}vec{i} & vec{j'} & vec{k}end{pmatrix}egin{pmatrix}x_1' \ y_1' \ z_1'end{pmatrix}=x_1'vec{i} + y_1'vec{j'} + z_1'vec{k}
]
[vec{v_2}=egin{pmatrix}vec{i} & vec{j'} & vec{k}end{pmatrix}egin{pmatrix}x_2' \ y_2' \ z_2'end{pmatrix}=x_2'vec{i} + y_2'vec{j'} + z_2'vec{k}
]
则(vec{v_1} imes vec{v_2})为:
[vec{v_1} imes vec{v_2}
=(x_1'vec{i} + y_1'vec{j'} + z_1'vec{k}) imes(x_2'vec{i} + y_2'vec{j'} + z_2'vec{k})
]
[=egin{vmatrix}-vec{i} & -vec{j'} & -vec{k} \ x_1' & y_1' & z_1' \ x_2' & y_2' & z_2'end{vmatrix}=-egin{vmatrix}vec{i} & vec{j'} & vec{k} \ x_1' & y_1' & z_1' \ x_2' & y_2' & z_2'end{vmatrix}=egin{vmatrix}vec{i} & vec{j} & vec{k} \ x_1' & -y_1' & z_1' \ x_2' & -y_2' & z_2'end{vmatrix}
]
左手系下计算左手系坐标:
[vec{v_1} imes vec{v_2}
=-egin{vmatrix}vec{i} & vec{j'} & vec{k} \ x_1' & y_1' & z_1' \ x_2' & y_2' & z_2'end{vmatrix}
]
左手系下计算右手系坐标:
[vec{v_1} imes vec{v_2}
=egin{vmatrix}vec{i} & vec{j} & vec{k} \ x_1' & -y_1' & z_1' \ x_2' & -y_2' & z_2'end{vmatrix}
]
左手系坐标与右手系坐标之间关系
[egin{pmatrix}x_1' \ y_1' \ z_1'end{pmatrix}
=egin{pmatrix}e_1 & -e_2 & e_3end{pmatrix}egin{pmatrix}x_1 \ y_1 \ z_1end{pmatrix}
=egin{pmatrix}1 & 0 & 0\0 & -1 & 0\0 & 0 & 1end{pmatrix}egin{pmatrix}x_1 \ y_1 \ z_1end{pmatrix}
=egin{pmatrix}x_1 \ -y_1 \ z_1end{pmatrix}
]
同理,(egin{pmatrix}x_1 \ y_1 \ z_1end{pmatrix}=egin{pmatrix}x_1' \ -y_1' \ z_1'end{pmatrix})
从而,左手系叉乘法
[vec{v_1} imes vec{v_2}
=egin{vmatrix}vec{i} & vec{j} & vec{k} \ x_1' & -y_1' & z_1' \ x_2' & -y_2' & z_2'end{vmatrix}
=egin{vmatrix}vec{i} & vec{j} & vec{k} \ x_1 & y_1 & z_1 \ x_2 & y_2 & z_2end{vmatrix}
]