问题描述:
Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
Example:
Input: A = -3, B = 0, C = 3, D = 4, E = 0, F = -1, G = 9, H = 2
Output: 45
Note:
Assume that the total area is never beyond the maximum possible value of int.
解题思路:
两个矩形可能重合,所以为两个矩形面积减去重合面积即可。
注意判断是否存在重合时,四个值都要进行比较。
重合矩形的左下角的x值为max(A,E) ,y为max(B,F)
右上角的x值为min(C,G) y 为 min(D,H)
代码:
class Solution { public: int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) { int area1 = (D-B)*(C-A); int area2 = (H-F)*(G-E); int ret = area1+area2; if(E >= C || F >= D || G <= A || H <= B) return ret; int I=max(A,E); int J=min(C,G); int K=max(B,F); int L=min(D,H); ret -= (J-I)*(L-K); return ret; } };