问题描述:
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋
times.
You may assume that the array is non-empty and the majority element always exist in the array.
Example 1:
Input: [3,2,3] Output: 3
Example 2:
Input: [2,2,1,1,1,2,2] Output: 2
解题思路:
我们可以用map来存储值与数量的关系,但是那样的空间复杂度为O(n)
这里学习一种O(1)的空间复杂度的解法:摩尔投票法(Moore Voting),能使用的前提是:一定有众数存在!
我们首先设定第一个数字为众数候选者,设定计数器cnt为1
然后这个时候遍历下一个数字,若下一个数字与候选者相等:cnt自增1;若不想等:自减一
在每次遍历前我们要先检查当前计数器的值:
若计数器为0,则设置当前数字位候选数字。
代码:
class Solution { public: int majorityElement(vector<int>& nums) { int candidate = nums[0]; int cnt = 1; for(int i = 1; i < nums.size(); i++){ if(cnt == 0){ candidate = nums[i]; } if(nums[i] == candidate) cnt++; else cnt--; } return candidate; } };