zoukankan      html  css  js  c++  java
  • 764. Largest Plus Sign

    问题描述:

    In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given list mines which are 0. What is the largest axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there is none, return 0.

    An "axis-aligned plus sign of 1s of order k" has some center grid[x][y] = 1 along with 4 arms of length k-1 going up, down, left, and right, and made of 1s. This is demonstrated in the diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1s.

    Examples of Axis-Aligned Plus Signs of Order k:

    Order 1:
    000
    010
    000
    
    Order 2:
    00000
    00100
    01110
    00100
    00000
    
    Order 3:
    0000000
    0001000
    0001000
    0111110
    0001000
    0001000
    0000000
    

    Example 1:

    Input: N = 5, mines = [[4, 2]]
    Output: 2
    Explanation:
    11111
    11111
    11111
    11111
    11011
    In the above grid, the largest plus sign can only be order 2.  One of them is marked in bold.
    

    Example 2:

    Input: N = 2, mines = []
    Output: 1
    Explanation:
    There is no plus sign of order 2, but there is of order 1.
    

    Example 3:

    Input: N = 1, mines = [[0, 0]]
    Output: 0
    Explanation:
    There is no plus sign, so return 0.
    

    Note:

    1. N will be an integer in the range [1, 500].
    2. mines will have length at most 5000.
    3. mines[i] will be length 2 and consist of integers in the range [0, N-1].
    4. (Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)

    解题思路:

    求当前矩阵中能够构成的最大的加号的大小。

    加号的4条边要求等长。

    我们可以用两个辅助矩阵:leftUp,rightDown分别记录该点上左,下右最长的连续的边。

    然后遍历矩阵。当元素为1的时候,可以作为加号的中心,取上下左右最短的边作为加号的边。

    加号的大小为边的长度+1.

    代码:

    class Solution {
    public:
        int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) {
            vector<vector<int>> mtx(N, vector<int>(N, 1));
            for(auto m : mines){
                mtx[m[0]][m[1]] = 0;
            }
            vector<vector<pair<int,int>>> leftUp(N, vector<pair<int,int>>(N, {0,0}));
            for(int i = 0; i < N; i++){
                for(int j = 0; j < N; j++){
                    int l = 0, u = 0;
                    if(i-1 > -1){
                        if(mtx[i-1][j] == 1) u = leftUp[i-1][j].first+1;
                    }
                    if(j-1 > -1){
                        if(mtx[i][j-1] == 1) l = leftUp[i][j-1].second+1;
                    }
                    leftUp[i][j] = {u, l};
                }
            }
            vector<vector<pair<int, int>>> rightDown(N, vector<pair<int, int>>(N));
            for(int i = N-1; i > -1; i--){
                for(int j = N-1; j > -1; j--){
                    int r = 0, d = 0;
                    if(i+1 < N){
                        if(mtx[i+1][j] == 1) d = rightDown[i+1][j].first+1;
                    }
                    if(j+1 < N){
                        if(mtx[i][j+1] == 1) r = rightDown[i][j+1].second+1;
                    }
                    rightDown[i][j] = {d, r};
                }
            }
            int ret = 0;
            for(int i = 0; i < N; i++){
                for(int j = 0; j < N; j++){
                    if(mtx[i][j] == 1){
                        int lu = min(leftUp[i][j].first, leftUp[i][j].second);
                        int rd = min(rightDown[i][j].first, rightDown[i][j].second);
                        int len = min(lu , rd);
                        ret = max(len+1, ret);
                    }
                }
            }
            return ret;
        }
    };
  • 相关阅读:
    记intouch SMC local下驱动丢失问题解决
    随机变量的频数分布图
    Clonal hematopoiesis of indeterminate potential(意义不明的克隆性造血)-CHIP
    聚类热图
    linux把软件安装到指定目录
    Phred-scale quality scores的相关内容
    GATK的硬过滤
    VCF和GVCF格式说明
    非root权限 安装更新gcc
    在非小细胞肺癌中,MET基因的14号外显子突变和年龄,依赖于癌症阶段的CNV,C-MET过表达的关系
  • 原文地址:https://www.cnblogs.com/yaoyudadudu/p/9308371.html
Copyright © 2011-2022 走看看