zoukankan      html  css  js  c++  java
  • 516. Longest Palindromic Subsequence

    问题描述:

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

    Example 1:
    Input:

    "bbbab"
    

    Output:

    4
    

    One possible longest palindromic subsequence is "bbbb".

    Example 2:
    Input:

    "cbbd"
    

    Output:

    2
    

    One possible longest palindromic subsequence is "bb".

    解题思路:

    这道题可以想到用dp来解,而且是二维dp

    dp[i][j]的含义为:字符串s的子串[i,j]中可以构成的最长回文序列的长度。

    状态转移方程为:

    dp[i][j] = dp[i+1][j-1] if(s[i] == s[j] && i != j-1)

    dp[i][j] = 2 if(s[i] == s[j] && i == j-1)

    dp[i][j] = max(dp[i+1][j], dp[i][j-1])

    代码:

    时间复杂度为O(n2)

    class Solution {
    public:
        int longestPalindromeSubseq(string s) {
            if(s.empty()) return 0;
            int n = s.size();
            vector<vector<int>> dp(n, vector<int>(n, 0));
            for(int i = 0; i < n; i++)
                dp[i][i] = 1;
            int i = 0, j = 1, start = 1;
            while(i != 0 || j != n){
                if(s[i] == s[j]){
                    dp[i][j] = i == j-1 ? 2 : dp[i+1][j-1]+2;
                }else{
                    dp[i][j] = max(dp[i][j-1],dp[i+1][j]);
                }
                i++;
                j++;
                if(j == n){
                    i = 0;
                    start++;
                    j = start;
                }
            }
            return dp[0][n-1];
        }
    };

    有一维的解法:

    参考:https://leetcode.com/problems/longest-palindromic-subsequence/discuss/146968/C++-DP-with-1D-array-8ms-beats-100

    class Solution {
    public:
        int longestPalindromeSubseq(string s);
    };
    
    int Solution::longestPalindromeSubseq(string s){
        if(s.empty())
            return 0;
        int len = s.size();
        vector<int> dp(len, 1);   
        for (int i=1; i<len; ++i){
            int maxlen = 0;
            for (int j=i-1; j>=0; --j){
                int previous_max = maxlen;
                if (dp[j]>maxlen)
                    maxlen = dp[j];
                if(s[j]==s[i]){
                    dp[j] = previous_max + 2; // update
                }
            }
        }
        int maxlen = 1;
        int i=0;
        while(i<len){
            maxlen = max(maxlen, dp[i]);
            i++;
        }
        
        return maxlen;
    }
  • 相关阅读:
    hash算法
    2020/9/30计算机硬件组成day3
    NIO与IO区别
    Collection.toArray()方法使用的坑&如何反转数组
    Arrays.asList()使用指南
    JDK8的LocalDateTime用法
    Linux 删除文件夹和文件的命令
    list集合为空或为null的区别
    easyExcel使用
    java Object 转换为 Long
  • 原文地址:https://www.cnblogs.com/yaoyudadudu/p/9425336.html
Copyright © 2011-2022 走看看